zoukankan      html  css  js  c++  java
  • General Problem Solving Techniques [Beginner-1]~E

            Mohammad has recently visited Switzerland. As he loves his friends very much, he decided to buy some chocolate for them, but as this fine chocolate is very expensive (You know Mohammad is a little BIT stingy!), he could only afford buying one chocolate, albeit a very big one (part of it can be seen in figure 1) for all of them as a souvenir. Now, he wants to give each of his friends exactly one part of this chocolate and as he believes all human beings are equal (!), he wants to split it into equal parts.

            The chocolate is an M × N rectangle constructed from M × N unit-sized squares. You can assume that Mohammad has also M × N friends waiting to receive their piece of chocolate.

            To split the chocolate, Mohammad can cut it in vertical or horizontal direction (through the lines that separate the squares). Then, he should do the same with each part separately until he reaches M × N unit size pieces of chocolate. Unfortunately, because he is a little lazy, he wants to use the minimum number of cuts required to accomplish this task.

           Your goal is to tell him the minimum number of cuts needed to split all of the chocolate squares apart.

    Input

    The input consists of several test cases. In each line of input, there are two integers 1 ≤ M ≤ 300, the number of rows in the chocolate and 1 ≤ N ≤ 300, the number of columns in the chocolate. The input should be processed until end of file is encountered.

    Output

    For each line of input, your program should produce one line of output containing an integer indicating the minimum number of cuts needed to split the entire chocolate into unit size pieces.

    Sample Input

    2 2

    1 1

    1 5

    Sample Output

    3

    0

    4

    解题思路:题目的意思是求出最小步骤将巧克力分开的情况。根据案例可以猜测出就是将M*N的值减去1,即可得出正确答案。

    程序代码:

    #include<stdio.h>
    int main()
    {
        int n,m;
        while(scanf("%d%d",&m,&n)!=EOF)
        {
            printf("%d
    ",m*n-1);
        }
    
        return 0;
    }
  • 相关阅读:
    百度点聚合功能,自定义针头功能
    iOS之极光推送
    iOS之短信认证
    iOS FMDB
    iOS 远程推送
    iOS之本地推送(前台模式与后台模式)
    iOS指纹识别
    关于——GCD
    关于——NSThread
    给label text 上色 && 给textfiled placeholder 上色
  • 原文地址:https://www.cnblogs.com/chenchunhui/p/4820292.html
Copyright © 2011-2022 走看看