zoukankan      html  css  js  c++  java
  • HDU-ACM“菜鸟先飞”冬训系列赛——第9场

    Problem A

    题意
    一对兔子每月生一对兔子,兔子在(m)月后成熟,问(d)月后有多少兔子

    分析
    可以发现,第i月的兔子数量取决于第i-1月与i-m月,故
    (a[i]=a[i-1]+a[i-m],a[0]=1)
    然后还需要高精度(捂脸),于是找了个高精度板子就好了

    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<cassert>
    #include<cstdio>
    #include<vector>
    #include<string>
    #include<map>
    #include<set>
    using std::cin;
    using std::max;
    using std::cout;
    using std::endl;
    using std::map;
    using std::string;
    using std::istream;
    using std::ostream;
    #define sz(c) (int)(c).size()
    #define all(c) (c).begin(), (c).end()
    #define iter(c) decltype((c).begin())
    #define cls(arr,val) memset(arr,val,sizeof(arr))
    #define cpresent(c, e) (find(all(c), (e)) != (c).end())
    #define rep(i, n) for (int i = 0; i < (int)(n); i++)
    #define fork(i, k, n) for (int i = (int)k; i <= (int)n; i++)
    #define F(i,a,b) for(int i=a;i<=b;++i)
    #define R(i,a,b) for(int i=a;i<b;++i)
    #define tr(c, i) for (iter(c) i = (c).begin(); i != (c).end(); ++i)
    #define pb(e) push_back(e)
    #define mp(a, b) make_pair(a, b)
    struct BigN {
        typedef unsigned long long ull;
        static const int Max_N = 2010;
        int len, data[Max_N];
        BigN() { memset(data, 0, sizeof(data)), len = 0; }
        BigN(const int num) {
            memset(data, 0, sizeof(data));
            *this = num;
        }
        BigN(const char *num) {
            memset(data, 0, sizeof(data));
            *this = num;
        }
        void clear() { len = 0, memset(data, 0, sizeof(data)); }
        BigN& clean(){ while (len > 1 && !data[len - 1]) len--;  return *this; }
        string str() const {
            string res = "";
            for (int i = len - 1; ~i; i--) res += (char)(data[i] + '0');
            if (res == "") res = "0";
            res.reserve();
            return res;
        }
        BigN operator = (const int num) {
            int j = 0, i = num;
            do data[j++] = i % 10; while (i /= 10);
            len = j;
            return *this;
        }
        BigN operator = (const char *num) {
            len = strlen(num);
            for (int i = 0; i < len; i++) data[i] = num[len - i - 1] - '0';
            return *this;
        }
        BigN operator + (const BigN &x) const {
            BigN res;
            int n = max(len, x.len) + 1;
            for (int i = 0, g = 0; i < n; i++) {
                int c = data[i] + x.data[i] + g;
                res.data[res.len++] = c % 10;
                g = c / 10;
            }
            return res.clean();
        }
        BigN operator * (const BigN &x) const {
            BigN res;
            int n = x.len;
            res.len = n + len;
            for (int i = 0; i < len; i++) {
                for (int j = 0, g = 0; j < n; j++) {
                    res.data[i + j] += data[i] * x.data[j];
                }
            }
            for (int i = 0; i < res.len - 1; i++) {
                res.data[i + 1] += res.data[i] / 10;
                res.data[i] %= 10;
            }
            return res.clean();
        }
        BigN operator * (const int num) const {
            BigN res;
            res.len = len + 1;
            for (int i = 0, g = 0; i < len; i++) res.data[i] *= num;
            for (int i = 0; i < res.len - 1; i++) {
                res.data[i + 1] += res.data[i] / 10;
                res.data[i] %= 10;
            }
            return res.clean();
        }
        BigN operator - (const BigN &x) const {
            assert(x <= *this);
            BigN res;
            for (int i = 0, g = 0; i < len; i++) {
                int c = data[i] - g;
                if (i < x.len) c -= x.data[i];
                if (c >= 0) g = 0;
                else g = 1, c += 10;
                res.data[res.len++] = c;
            }
            return res.clean();
        }
        BigN operator / (const BigN &x) const {
            BigN res, f = 0;
            for (int i = len - 1; ~i; i--) {
                f *= 10;
                f.data[0] = data[i];
                while (f >= x) {
                    f -= x;
                    res.data[i]++;
                }
            }
            res.len = len;
            return res.clean();
        }
        BigN operator % (const BigN &x) {
            BigN res = *this / x;
            res = *this - res * x;
            return res;
        }
        BigN operator += (const BigN &x) { return *this = *this + x; }
        BigN operator *= (const BigN &x) { return *this = *this * x; }
        BigN operator -= (const BigN &x) { return *this = *this - x; }
        BigN operator /= (const BigN &x) { return *this = *this / x; }
        BigN operator %= (const BigN &x) { return *this = *this % x; }
        bool operator <  (const BigN &x) const {
            if (len != x.len) return len < x.len;
            for (int i = len - 1; ~i; i--) {
                if (data[i] != x.data[i]) return data[i] < x.data[i];
            }
            return false;
        }
        bool operator >(const BigN &x) const { return x < *this; }
        bool operator<=(const BigN &x) const { return !(x < *this); }
        bool operator>=(const BigN &x) const { return !(*this < x); }
        bool operator!=(const BigN &x) const { return x < *this || *this < x; }
        bool operator==(const BigN &x) const { return !(x < *this) && !(x > *this); }
        friend istream& operator >> (istream &in, BigN &x) {
            string src;
            in >> src;
            x = src.c_str();
            return in;
        }
        friend ostream& operator << (ostream &out, const BigN &x) {
            out << x.str();
            return out;
        }
    }A[101];
    inline void work(int m,int d) {
        R(i,0,m) A[i]=i+1;
        F(i,m,d) A[i]=A[i-1]+A[i-m];
        //A[2]=A[1]+A[3]+(A[3]+A[1]-A[0])*(A[1]-A[0])/(A[3]+1);
    }
    int main() {
        std::ios::sync_with_stdio(false);
        int m,d;
        while (scanf("%d %d",&m,&d),m+d) {
            work(m,d);
            cout<<A[d]<<endl;
        }
        return 0;
    }
    

    Problem C

    题意
    在n*m的图中有B个障碍物,问从(1,1)->(n,m)的最短路径条数
    分析
    引用一下ChinaCzy的解释

    //模拟+递推,感觉这种题不能称之为动态规划,只能叫递推因为每个点只调用了一次,不存在所谓的转移
    //题意是从起点到终点,有多少种不同的走法,图中有些路有障碍
    //注意到规模是MN <= 1000000,所以直接模拟就得了,数组嘛不能开成二维的会MLE
    //把二维的坐标转化成1维的,这样就开的下了,数组的每个位存放的是十字路口的点,记录走到当前点有多少种不同的走法
    //X,Y这两个BOOL型数组,记录的是当前这条路是否被阻碍了,每个点左下方都对应着2条路,分别用X,Y来存放,这样对应关系会清晰些
    //至于哪条路被堵,这个得自己画个图琢磨琢磨,一开始我搞错了,WA了1次
    //最坏情况是1000000
    2+1..所以得开到100W,这样还真蛋疼,初始化的时候慢了好多

    代码

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #include <string>
    #include <map>
    #include <queue>
    using namespace std;
    
    #define ll long long
    #define F(i,a,b) for(int i=a;i<=b;++i)
    #define R(i,a,b) for(int i=a;i<b;++i)
    #define mem(a,b) memset(a,b,sizeof(a))
    #pragma comment(linker, "/STACK:102400000,102400000")
    inline void read(int &x){x=0; char ch=getchar();while(ch<'0') ch=getchar();while(ch>='0'){x=x*10+ch-48; ch=getchar();}}
    
    int m,n,num,xx,yy,aa,bb;
    bool x[2002000],y[2002000];
    ll a[2002000];
    int turn(int x,int y) { return x*(n+1)+y; }
    int main()
    {
        while(scanf("%d %d",&m,&n),m*n)
        {
            mem(x,0);mem(y,0);mem(a,0);
            scanf("%d",&num);
            F(i,1,num)
            {
                scanf("%d %d %d %d",&xx,&yy,&aa,&bb);
                for(int i=xx;i<xx+aa;++i)for(int j=yy;j<yy+bb;++j)
                {
                    if(yy+bb-1>j) y[turn(i,j)]=1;
                    if(xx+aa-1>i) x[turn(i,j)]=1;
                }
            }
            F(i,1,n) a[i]=1;
            F(i,1,m) a[i*(n+1)]=1;
            F(i,1,m) F(j,1,n)
            {
                if(x[turn(i,j)]&&y[turn(i,j)]) continue;
                a[turn(i,j)]=(y[turn(i,j)]?0:a[turn(i-1,j)]) + (x[turn(i,j)]?0:a[turn(i,j-1)]);
            }
            printf("%lld
    ",a[turn(m,n)]);
        }
        return 0;
    }
    

    Problem D

    题意
    给出一张图(森林),判断最大深度与宽度,若有环或一个顶点上有大于1条边相连则(Invalid)
    分析
    DFS一遍即可
    代码

    #include <vector>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    using namespace std;
    vector<int> forest[105];
    int width[105];
    bool visited[105], isloop;
    int endPoints[105];
    int W, D;
    int vertex, edges;
    
    void DFS(int start, int level){
        if (visited[start]) {
            isloop = false;
            return;
        }
        visited[start] = true;
        if (level > D) D = level;
        width[level] ++;
        if (width[level] > W) W = width[level];
        for(int i = 0 ; i < forest[start].size(); i++){
            if (!isloop) return;
            int v = forest[start][i];
            DFS(v, level+1);
        }
    }
    int main(){
        while (1) {
            cin >> vertex >> edges;
            if (vertex == 0) break;
            W = 0;
            D = 0;
            memset(width, 0, sizeof(width));
            memset(visited, false, sizeof(visited));
            memset(endPoints, 0, sizeof(endPoints));
            memset(forest, 0, sizeof(forest));
            isloop = true;
            if (edges >= vertex) isloop = false;
            int a,b;
            for (int i = 0; i < edges; i++) {
                cin >> a >> b;
                forest[a].push_back(b);
                endPoints[b] ++;
            }
            for (int i = 1; i <= vertex; i++) {
                if (endPoints[i] == 0) {
                    DFS(i, 0);
                }
            }
            for(int i = 1; i <= vertex; i++){
                if (!visited[i]) isloop = false;
            }
            if (!isloop) cout << "INVALID" << endl;
            else cout << D << " " << W << endl;
    
        }
        return 0;
    }
    

    Problem E

    题意
    问匹配串数目,A与T,C与G配对

    分析
    (n)小于100,直接(O(n^2))比较

    Problem F(BFS)

    传送门

    题意
    给出(n)台主机,(m)条路径,目标主机是(t),问到(t)的路径且交换不大于(10)次的最短路径长度

    分析
    一个简单BFS,注意条件,详情见代码

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #include <string>
    #include <map>
    #include <queue>
    using namespace std;
    
    #define ll long long
    #define F(i,a,b) for(int i=a;i<=b;++i)
    #define R(i,a,b) for(int i=a;i<b;++i)
    #define mem(a,b) memset(a,b,sizeof(a))
    #pragma comment(linker, "/STACK:102400000,102400000")
    inline void read(int &x){x=0; char ch=getchar();while(ch<'0') ch=getchar();while(ch>='0'){x=x*10+ch-48; ch=getchar();}}
    const int inf=0x3f3f3f3f;
    int ans,n,m,target,u,v,value,mp[1010][1010],vis[1010][1010];
    struct node
    {
        int num,value,depth;
        node(int _p, int _v,int _dep) :num(_p), value(_v),depth(_dep){}//复制构造函数
        node(){}
        bool operator<(const node &p)const
        {
            return value>p.value;
        }
    }point;
    void bfs()
    {
        priority_queue<node>q;
        q.push(node(0,0,0));
        while(!q.empty())
        {
            point=q.top();q.pop();
            if(point.depth<=10&&point.num==target)
            {
                ans=min(ans,point.value);
            }
            R(i,0,n)
            {
                if(mp[point.num][i]&&vis[point.num][i]==0)
                {
                    vis[point.num][i]=vis[i][point.num]=1;
                    q.push(node(i,point.value+mp[point.num][i],point.depth+1));
                }
            }
        }
    }
    int main()
    {
        while(scanf("%d %d %d",&n,&m,&target),n+m+target)
        {
            mem(vis,0);mem(mp,0);
            F(i,1,m)
            {
                scanf("%d %d %d",&u,&v,&value);
                mp[u][v]=mp[v][u]=value;
            }
            vis[0][0]=1;ans=inf;
            bfs();
            if(ans!=inf) printf("%d
    ",ans);else puts("no");
        }
        return 0;
    }
    

    Problem G

    题意略,直接模拟即可

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #include <string>
    #include <map>
    #include <queue>
    using namespace std;
    
    #define ll long long
    #define F(i,a,b) for(int i=a;i<=b;++i)
    #define R(i,a,b) for(int i=a;i<b;++i)
    #define mem(a,b) memset(a,b,sizeof(a))
    #pragma comment(linker, "/STACK:102400000,102400000")
    inline void read(int &x){x=0; char ch=getchar();while(ch<'0') ch=getchar();while(ch>='0'){x=x*10+ch-48; ch=getchar();}}
    
    int t,n,num,ret;
    
    int main()
    {
        for(scanf("%d",&t);t--;)
        {
            scanf("%d %d",&n,&num);
            ret=(int)sqrt(num);
            if(ret*ret==num)
            {
                if(ret&1) {printf("%d %d
    ",1+(n-ret)/2,ret+(n-ret)/2);continue;}
                else { printf("%d %d
    ",ret+(n+1-ret)/2,1+(n-ret+1)/2);continue; }
            }
            else
            {
                int low=(int)sqrt(num),high=low+1,x,y;
                if(high&1)
                {
                    if(num<=(high*high-high+1))
                    {
                        x=1+high*high-high+1-num,y=1;
                        printf("%d %d
    ",x+(n-high)/2,y+(n-high)/2);
                        continue;
                    }
                    else
                    {
                        x=1,y=1+num-(high*high-high+1);
                        printf("%d %d
    ",x+(n-high)/2,y+(n-high)/2);
                        continue;
                    }
                }
                else
                {
                     if(num<=(high*high-high+1))
                    {
                        x=num-(low*low),y=high;
                        printf("%d %d
    ",x+(n-high+1)/2,y+(n-high+1)/2);
                        continue;
                    }
                    else
                    {
                        x=high,y=1+high*high-num;
                        printf("%d %d
    ",x+(n-high+1)/2,y+(n-high+1)/2);
                        continue;
                    }
                }
            }
        }
        return 0;
    }
    
  • 相关阅读:
    解析 AJAX 返回回来的 xml字符串
    JS 与 后台如何获取 Cookies
    鼠标上下滚轮事件
    MVC Control 返回各种数据
    ildasm 查看程序集 里面的图标的意思
    对象的序列化和反序列化 itprobie
    文件上传通用类 itprobie
    文件下载的四种方式 itprobie
    委托事件的实际运用 itprobie
    使用NPOI实现excel的导入导出 itprobie
  • 原文地址:https://www.cnblogs.com/chendl111/p/6397051.html
Copyright © 2011-2022 走看看