传送门
题意
给出一张图,LL从一个点等概率走到上下左右位置,询问LL从宿舍走到餐厅的步数期望
分析
该题是一道高斯消元+期望的题目
难点在于构造矩阵,我们发现以下结论
设某点走到餐厅的期望为Ek
1.当该点为餐厅,Ek=0
2.(Ek=sum_{i=1}^{cnt}Enexti-1)
我们先BFS将可达点标号,再构建矩阵,再高斯消元,最后A[vis[sx][sy]][id]为所求解
trick
代码
#include<bits/stdc++.h>
using namespace std;
const int M = 202;
const double eps = 1e-8;
int equ, var;
double a[M][M], x[M];
void Gauss ()
{
int i, j, k, col, max_r;
for (k = 0, col = 0; k < equ && col < var; k++, col++)
{
max_r = k;
for (i = k+1; i < equ; i++)if (fabs (a[i][col]) > fabs (a[max_r][col])) max_r = i;
if (k != max_r)
{
for (j = col; j < var; j++)swap (a[k][j], a[max_r][j]);
swap (x[k], x[max_r]);
}
for (j = col+1; j < var; j++) a[k][j] /= a[k][col]; x[k] /= a[k][col];
a[k][col] = 1;
for (i = 0; i < equ; i++) if (i != k)
{
x[i] -= x[k] * a[i][k];
for (j = col+1; j < var; j++) a[i][j] -= a[k][j] * a[i][col];
a[i][col] = 0;
}
}
}
//has[x]表示人在x点时的变量号,因为我们只用可达状态建立方程,所以需要编号
int has[M], vis[M], id, e, n, m;
double p[M], sum;
int bfs (int u)
{
memset (has, -1, sizeof(has));
memset (a, 0, sizeof(a)); //忘记初始化WA勒,以后得注意
memset (vis, 0, sizeof(vis));
int v, i, flag = 0;id=0;
queue<int> q;
q.push (u);
has[u] = id++;
while (!q.empty ())
{
u = q.front ();q.pop ();
if (vis[u]) continue;
vis[u] = 1;
if (u == e || u == n-e) //终点有两个,你懂的~
{
a[has[u]][has[u]] = 1;
x[has[u]] = 0;
flag = 1;
continue;
}
//E[x] = sum ((E[x+i]+i) * p[i])
// ----> E[x] - sum(p[i]*E[x+i]) = sum(i*p[i])
a[has[u]][has[u]] = 1;x[has[u]] = sum;
for (i = 1; i <= m; i++)if(fabs(p[i])>eps)
{
//非常重要!概率为0,该状态可能无法到达,如果还去访问并建立方程会导致无解
v = (u + i) % n;
if (has[v] == -1) has[v] = id++;
a[has[u]][has[v]] -= p[i];
q.push (v);
}
}
return flag;
}
int main()
{
int t, s, d, i;
for(scanf("%d",&t);t--;)
{
scanf ("%d%d%d%d%d", &n, &m, &e, &s, &d);
n = 2*(n-1);sum = 0;
for (i = 1; i <= m; i++)
{
scanf ("%lf", p+i);
p[i] = p[i] / 100;
sum += p[i] * i;
}
if (s == e){puts ("0.00");continue;}
//一开始向左,起点要变
if (d > 0) s = (n - s) % n;
if (!bfs (s)){puts ("Impossible !");continue;}
equ = var = id;
Gauss ();
printf ("%.2f
", x[has[s]]);
}
return 0;
}