zoukankan      html  css  js  c++  java
  • HDU2262;Where is the canteen(高斯消元+期望)

    传送门

    题意

    给出一张图,LL从一个点等概率走到上下左右位置,询问LL从宿舍走到餐厅的步数期望

    分析

    该题是一道高斯消元+期望的题目
    难点在于构造矩阵,我们发现以下结论
    设某点走到餐厅的期望为Ek
    1.当该点为餐厅,Ek=0
    2.(Ek=sum_{i=1}^{cnt}Enexti-1)
    我们先BFS将可达点标号,再构建矩阵,再高斯消元,最后A[vis[sx][sy]][id]为所求解

    trick

    代码

    #include<bits/stdc++.h>
    using namespace std;
    
    const int M = 202;
    const double eps = 1e-8;
    int equ, var;
    double a[M][M], x[M];
    
    void Gauss ()
    {
        int i, j, k, col, max_r;
        for (k = 0, col = 0; k < equ && col < var; k++, col++)
        {
            max_r = k;
            for (i = k+1; i < equ; i++)if (fabs (a[i][col]) > fabs (a[max_r][col])) max_r = i;
            if (k != max_r)
            {
                for (j = col; j < var; j++)swap (a[k][j], a[max_r][j]);
                swap (x[k], x[max_r]);
            }
            for (j = col+1; j < var; j++) a[k][j] /= a[k][col]; x[k] /= a[k][col];
            a[k][col] = 1;
            for (i = 0; i < equ; i++) if (i != k)
            {
                x[i] -= x[k] * a[i][k];
                for (j = col+1; j < var; j++) a[i][j] -= a[k][j] * a[i][col];
                a[i][col] = 0;
            }
        }
    }
    
    //has[x]表示人在x点时的变量号,因为我们只用可达状态建立方程,所以需要编号
    int has[M], vis[M], id, e, n, m;
    double p[M], sum;
    
    int bfs (int u)
    {
        memset (has, -1, sizeof(has));
        memset (a, 0, sizeof(a));           //忘记初始化WA勒,以后得注意
        memset (vis, 0, sizeof(vis));
        int v, i, flag = 0;id=0;
        queue<int> q;
        q.push (u);
        has[u] = id++;
        while (!q.empty ())
        {
            u = q.front ();q.pop ();
            if (vis[u]) continue;
            vis[u] = 1;
            if (u == e || u == n-e)     //终点有两个,你懂的~
            {
                a[has[u]][has[u]] = 1;
                x[has[u]] = 0;
                flag = 1;
                continue;
            }
            //E[x] = sum ((E[x+i]+i) * p[i])
            // ----> E[x] - sum(p[i]*E[x+i]) = sum(i*p[i])
            a[has[u]][has[u]] = 1;x[has[u]] = sum;
            for (i = 1; i <= m; i++)if(fabs(p[i])>eps)
            {
                //非常重要!概率为0,该状态可能无法到达,如果还去访问并建立方程会导致无解
                v = (u + i) % n;
                if (has[v] == -1) has[v] = id++;
                a[has[u]][has[v]] -= p[i];
                q.push (v);
            }
        }
        return flag;
    }
    
    int main()
    {
        int t, s, d, i;
        for(scanf("%d",&t);t--;)
        {
            scanf ("%d%d%d%d%d", &n, &m, &e, &s, &d);
            n = 2*(n-1);sum = 0;
            for (i = 1; i <= m; i++)
            {
                scanf ("%lf", p+i);
                p[i] = p[i] / 100;
                sum += p[i] * i;
            }
            if (s == e){puts ("0.00");continue;}
            //一开始向左,起点要变
            if (d > 0) s = (n - s) % n;
            if (!bfs (s)){puts ("Impossible !");continue;}
            equ = var = id;
            Gauss ();
            printf ("%.2f
    ", x[has[s]]);
        }
        return 0;
    }
    
    
  • 相关阅读:
    理解HTTP协议
    节点操作,节点属性的操作及DOM event事件
    jQuery的属性,事件及操作
    jQuery中的选择器及筛选器
    javascipt中的DOM对象
    javascript中的BOM对象
    javascript中的Date对象和Math对象
    javascript中的字符串对象
    javascript基础
    CSS核心内容之浮动
  • 原文地址:https://www.cnblogs.com/chendl111/p/6727531.html
Copyright © 2011-2022 走看看