zoukankan      html  css  js  c++  java
  • 强化学习DQN算法实战之CartPole(百度PARL)

    简介
    这篇笔记主要是记录了百度PARL的学习过程中感觉还比较经典且入门的部分。

    CartPole也相当于强化学习里面的Helloworld了吧。

    环境描述

    基本环境可以参考:https://gym.openai.com/envs/CartPole-v1/ 以及https://github.com/PaddlePaddle/PARL/tree/develop/examples/DQN

    学习的目标是使得木棍在小车上树立的时间尽量长。action的选择只有向左或者是向右。环境会自动给出给出反馈,每一步后的得分,下一个局面的描述的状态,是否是结束。环境状态被gym自动封装成一个np.array,可以通过有关的API获取信息。  在这个例子中,环境的描述是一个4维的向量,我们不必管这4维向量的意义,只需要知道有这个描述即可(当然,如果你感兴趣,可以深究)。每个环境,gym都封装了一分数reward。而且,如果是结束状态,gym会给出描述符。这些在下面的代码中会有说明。

    算法介绍和说明

    先给出基本算法描述,算法来自上面的参考连接:

     这是一个最基本的Off-Policy借助Replay-Buffer和神经网络实现的算法。上面的ϕ,是表示一个连贯的输入,因为上述的算法是输入了一系列的图片。不过在这个例子中,可以把ϕ理解成仅仅输入当前的局面,即。之后会有exploration的操作,这是为了随机的选取那些评估分数比较低,但是可能会有较好表现的行动。Q(s,a) Q(s,a)Q(s,a)表示一个Q-function,它的作用是给状态s下的每个行动a一个评估分数。实际操作中,Q是一个神经网络,每个状态作为神经网络的输入,神经网络的输出是所有的行动a的评估分数。算法给出了​ yi的计算法则。对神经网络进行BP的时候,就根据这个公式来即可。每次从buffer中选取一个批次的数据,执行随机梯度下降SGD算法,即可进行修正。


    代码示例(在AI Studio平台)

     

    Step1 安装依赖

    !pip uninstall -y parl  
    !pip uninstall -y pandas scikit-learn 
    !pip install gym
    !pip install paddlepaddle==1.6.3    #尽量确保版本为此
    !pip install parl==1.3.1   #尽量确保版本为此
    

     
    Step2 导入依赖

    import parl
    from parl import layers
    import paddle.fluid as fluid
    import copy
    import numpy as np
    import os
    import gym
    from parl.utils import logger
    

      

    Step3 设置超参数

    LEARN_FREQ = 5 # 训练频率,不需要每一个step都learn,攒一些新增经验后再learn,提高效率
    MEMORY_SIZE = 20000    # replay memory的大小,越大越占用内存
    MEMORY_WARMUP_SIZE = 200  # replay_memory 里需要预存一些经验数据,再开启训练
    BATCH_SIZE = 32   # 每次给agent learn的数据数量,从replay memory随机里sample一批数据出来
    LEARNING_RATE = 0.001 # 学习率
    GAMMA = 0.99 # reward 的衰减因子,一般取 0.9 到 0.999 不等
    

      

    Step4 搭建Model、Algorithm、Agent架构

    class Model(parl.Model):
        def __init__(self, act_dim):
            hid1_size = 128
            hid2_size = 128
            # 3层全连接网络
            self.fc1 = layers.fc(size=hid1_size, act='relu')
            self.fc2 = layers.fc(size=hid2_size, act='relu')
            self.fc3 = layers.fc(size=act_dim, act=None)
    
        def value(self, obs):
            # 定义网络
            # 输入state,输出所有action对应的Q,[Q(s,a1), Q(s,a2), Q(s,a3)...]
            h1 = self.fc1(obs)
            h2 = self.fc2(h1)
            Q = self.fc3(h2)
            return Q
    

      

    class DQN(parl.Algorithm):
        def __init__(self, model, act_dim=None, gamma=None, lr=None):
            """ DQN algorithm
            
            Args:
                model (parl.Model): 定义Q函数的前向网络结构
                act_dim (int): action空间的维度,即有几个action
                gamma (float): reward的衰减因子
                lr (float): learning rate 学习率.
            """
            self.model = model
            self.target_model = copy.deepcopy(model)
    
            assert isinstance(act_dim, int)
            assert isinstance(gamma, float)
            assert isinstance(lr, float)
            self.act_dim = act_dim
            self.gamma = gamma
            self.lr = lr
    
        def predict(self, obs):
            """ 使用self.model的value网络来获取 [Q(s,a1),Q(s,a2),...]
            """
            return self.model.value(obs)
    
        def learn(self, obs, action, reward, next_obs, terminal):
            """ 使用DQN算法更新self.model的value网络
            """
            # 从target_model中获取 max Q' 的值,用于计算target_Q
            next_pred_value = self.target_model.value(next_obs)
            best_v = layers.reduce_max(next_pred_value, dim=1)
            best_v.stop_gradient = True  # 阻止梯度传递
            terminal = layers.cast(terminal, dtype='float32')
            target = reward + (1.0 - terminal) * self.gamma * best_v
    
            pred_value = self.model.value(obs)  # 获取Q预测值
            # 将action转onehot向量,比如:3 => [0,0,0,1,0]
            action_onehot = layers.one_hot(action, self.act_dim)
            action_onehot = layers.cast(action_onehot, dtype='float32')
            # 下面一行是逐元素相乘,拿到action对应的 Q(s,a)
            # 比如:pred_value = [[2.3, 5.7, 1.2, 3.9, 1.4]], action_onehot = [[0,0,0,1,0]]
            #  ==> pred_action_value = [[3.9]]
            pred_action_value = layers.reduce_sum(
                layers.elementwise_mul(action_onehot, pred_value), dim=1)
    
            # 计算 Q(s,a) 与 target_Q的均方差,得到loss
            cost = layers.square_error_cost(pred_action_value, target)
            cost = layers.reduce_mean(cost)
            optimizer = fluid.optimizer.Adam(learning_rate=self.lr)  # 使用Adam优化器
            optimizer.minimize(cost)
            return cost
    
        def sync_target(self):
            """ 把 self.model 的模型参数值同步到 self.target_model
            """
            self.model.sync_weights_to(self.target_model)
    

      

    class Agent(parl.Agent):
        def __init__(self,
                     algorithm,
                     obs_dim,
                     act_dim,
                     e_greed=0.1,
                     e_greed_decrement=0):
            assert isinstance(obs_dim, int)
            assert isinstance(act_dim, int)
            self.obs_dim = obs_dim
            self.act_dim = act_dim
            super(Agent, self).__init__(algorithm)
    
            self.global_step = 0
            self.update_target_steps = 200  # 每隔200个training steps再把model的参数复制到target_model中
    
            self.e_greed = e_greed  # 有一定概率随机选取动作,探索
            self.e_greed_decrement = e_greed_decrement  # 随着训练逐步收敛,探索的程度慢慢降低
    
        def build_program(self):
            self.pred_program = fluid.Program()
            self.learn_program = fluid.Program()
    
            with fluid.program_guard(self.pred_program):  # 搭建计算图用于 预测动作,定义输入输出变量
                obs = layers.data(
                    name='obs', shape=[self.obs_dim], dtype='float32')
                self.value = self.alg.predict(obs)
    
            with fluid.program_guard(self.learn_program):  # 搭建计算图用于 更新Q网络,定义输入输出变量
                obs = layers.data(
                    name='obs', shape=[self.obs_dim], dtype='float32')
                action = layers.data(name='act', shape=[1], dtype='int32')
                reward = layers.data(name='reward', shape=[], dtype='float32')
                next_obs = layers.data(
                    name='next_obs', shape=[self.obs_dim], dtype='float32')
                terminal = layers.data(name='terminal', shape=[], dtype='bool')
                self.cost = self.alg.learn(obs, action, reward, next_obs, terminal)
    
        def sample(self, obs):
            sample = np.random.rand()  # 产生0~1之间的小数
            if sample < self.e_greed:
                act = np.random.randint(self.act_dim)  # 探索:每个动作都有概率被选择
            else:
                act = self.predict(obs)  # 选择最优动作
            self.e_greed = max(
                0.01, self.e_greed - self.e_greed_decrement)  # 随着训练逐步收敛,探索的程度慢慢降低
            return act
    
        def predict(self, obs):  # 选择最优动作
            obs = np.expand_dims(obs, axis=0)
            pred_Q = self.fluid_executor.run(
                self.pred_program,
                feed={'obs': obs.astype('float32')},
                fetch_list=[self.value])[0]
            pred_Q = np.squeeze(pred_Q, axis=0)
            act = np.argmax(pred_Q)  # 选择Q最大的下标,即对应的动作
            return act
    
        def learn(self, obs, act, reward, next_obs, terminal):
            # 每隔200个training steps同步一次model和target_model的参数
            if self.global_step % self.update_target_steps == 0:
                self.alg.sync_target()
            self.global_step += 1
    
            act = np.expand_dims(act, -1)
            feed = {
                'obs': obs.astype('float32'),
                'act': act.astype('int32'),
                'reward': reward,
                'next_obs': next_obs.astype('float32'),
                'terminal': terminal
            }
            cost = self.fluid_executor.run(
                self.learn_program, feed=feed, fetch_list=[self.cost])[0]  # 训练一次网络
            return cost
    

      

    Step5 ReplayMemory

    import random
    import collections
    import numpy as np
    
    
    class ReplayMemory(object):
        def __init__(self, max_size):
            self.buffer = collections.deque(maxlen=max_size)
    
        # 增加一条经验到经验池中
        def append(self, exp):
            self.buffer.append(exp)
    
        # 从经验池中选取N条经验出来
        def sample(self, batch_size):
            mini_batch = random.sample(self.buffer, batch_size)
            obs_batch, action_batch, reward_batch, next_obs_batch, done_batch = [], [], [], [], []
    
            for experience in mini_batch:
                s, a, r, s_p, done = experience
                obs_batch.append(s)
                action_batch.append(a)
                reward_batch.append(r)
                next_obs_batch.append(s_p)
                done_batch.append(done)
    
            return np.array(obs_batch).astype('float32'), 
                np.array(action_batch).astype('float32'), np.array(reward_batch).astype('float32'),
                np.array(next_obs_batch).astype('float32'), np.array(done_batch).astype('float32')
    
        def __len__(self):
            return len(self.buffer)
    

      

    Step6 Training && Test(训练&&测试)

    def run_episode(env, agent, rpm):
        total_reward = 0
        obs = env.reset()
        step = 0
        while True:
            step += 1
            action = agent.sample(obs)  # 采样动作,所有动作都有概率被尝试到
            next_obs, reward, done, _ = env.step(action)
            rpm.append((obs, action, reward, next_obs, done))
    
            # train model
            if (len(rpm) > MEMORY_WARMUP_SIZE) and (step % LEARN_FREQ == 0):
                (batch_obs, batch_action, batch_reward, batch_next_obs,
                 batch_done) = rpm.sample(BATCH_SIZE)
                train_loss = agent.learn(batch_obs, batch_action, batch_reward,
                                         batch_next_obs,
                                         batch_done)  # s,a,r,s',done
    
            total_reward += reward
            obs = next_obs
            if done:
                break
        return total_reward
    
    
    # 评估 agent, 跑 5 个episode,总reward求平均
    def evaluate(env, agent, render=False):
        eval_reward = []
        for i in range(5):
            obs = env.reset()
            episode_reward = 0
            while True:
                action = agent.predict(obs)  # 预测动作,只选最优动作
                obs, reward, done, _ = env.step(action)
                episode_reward += reward
                if render:
                    env.render()
                if done:
                    break
            eval_reward.append(episode_reward)
        return np.mean(eval_reward)
    

      

    Step7 创建环境和Agent,创建经验池,启动训练,保存模型

    env = gym.make('CartPole-v0')  # CartPole-v0: 预期最后一次评估总分 > 180(最大值是200)
    action_dim = env.action_space.n  # CartPole-v0: 2
    obs_shape = env.observation_space.shape  # CartPole-v0: (4,)
    
    rpm = ReplayMemory(MEMORY_SIZE)  # DQN的经验回放池
    
    # 根据parl框架构建agent
    model = Model(act_dim=action_dim)
    algorithm = DQN(model, act_dim=action_dim, gamma=GAMMA, lr=LEARNING_RATE)
    agent = Agent(
        algorithm,
        obs_dim=obs_shape[0],
        act_dim=action_dim,
        e_greed=0.1,  # 有一定概率随机选取动作,探索
        e_greed_decrement=1e-6)  # 随着训练逐步收敛,探索的程度慢慢降低
    
    # 加载模型
    # save_path = './dqn_model.ckpt'
    # agent.restore(save_path)
    
    # 先往经验池里存一些数据,避免最开始训练的时候样本丰富度不够
    while len(rpm) < MEMORY_WARMUP_SIZE:
        run_episode(env, agent, rpm)
    
    max_episode = 2000
    
    # 开始训练
    episode = 0
    while episode < max_episode:  # 训练max_episode个回合,test部分不计算入episode数量
        # train part
        for i in range(0, 50):
            total_reward = run_episode(env, agent, rpm)
            episode += 1
    
        # test part
        eval_reward = evaluate(env, agent, render=False)  # render=True 查看显示效果
        logger.info('episode:{}    e_greed:{}   test_reward:{}'.format(
            episode, agent.e_greed, eval_reward))
    
    # 训练结束,保存模型
    save_path = './dqn_model.ckpt'
    agent.save(save_path)
    

      

    感觉吧,与监督学习相比,强化学习多了action,environment等概念。虽然可以将reward类比成监督学习中的label(或者反过来,label也可以认为是强化学习中最终的reward),但通过action与environment不断的交互甚至改变environment这一特点,是监督学习中所没有的。在构建应用的时候,监督学习的学习的目标:label,灌入的数据都是一个定值。比如,图像的分类的问题,在用CNN训练的时候,图片本身不发生变化,label也不会发生变化,唯一变化的是神经网络中的权重值。但强化学习在训练的时候,除了神经网络中的权重会发生变化(如果用NN建模的话),environment、reward等都会发生动态的变化。

    从结果曲线来看,强化学习跟监督学习也不太一样,监督的曲线是下降的。RL的曲线会波动的很厉害(上上下下的),不过如果模型好的话,大体上会是上升的。不知道是不是参数选择上面还要改一改

     

  • 相关阅读:
    线程池问题
    高级I/O
    闹钟设计
    线程竞争问题
    线程基本函数
    SpringMvc支持跨域访问
    gitlab qq邮件配置
    gitlab断电
    docker run always
    电子书网
  • 原文地址:https://www.cnblogs.com/chengjue924/p/13173947.html
Copyright © 2011-2022 走看看