zoukankan      html  css  js  c++  java
  • Xilinx FPGA用户约束文件(转自xilinx ISE 开发指南

    FPGA设计中的约束文件有3类:用户设计文件(.UCF文件)、网表约束文件(.NCF文件)以及物理约束文件(.PCF文件),可以完成时序约束、管 脚约束以及区域约束。3类约束文件的关系为:用户在设计输入阶段编写UCF文件,然后UCF文件和设计综合后生成NCF文件,最后再经过实现后生成PCF 文件。UCF文件是ASC 2码文件,描述了逻辑设计的约束,可以用文本编辑器和Xilinx约束文件编辑器进行编辑。NCF约束文件的语法和UCF文件相同,二者的区别在于: UCF文件由用户输入,NCF文件由综合工具自动生成,当二者发生冲突时,以UCF文件为准,这是因为UCF的优先级最高。PCF文件可以分为两个部分: 一部分是映射产生的物理约束,另一部分是用户输入的约束,同样用户约束输入的优先级最高。一般情况下,用户约束都应在UCF文件中完成,不建议直接修改 NCF文件和PCF文件。
    约束文件的后缀是.ucf,所以一般也被称为UCF文件。创建约束文件有两种方法,一种是通过新建方式,另一种则是利用过程管理器来完成。

    第一种方法:新建一个源文件,在代码类型中选取“Implementation Constrains File”,在“File Name”中输入约束文件的名称。单击“Next”按键进入模块选择对话框,选择要约束的模块,然后单击“Next”进入下一页,再单击“Finish”按键完成约束文件的创建。
    第二种方法:在工程管理区中,将“Source for”设置为“Synthesis/Implementation”。“Constrains Editor”是一个专用的约束文件编辑器,双击过程管理区中“User Constrains”下的“Create Timing Constrains”就可以打开“Constrains Editor”。
    需要注意的是,UCF文件是大小敏感的,端口名称必须和源代码中的名字一致,且端口名字不能和关键字一样。但是关键字NET是不区分大小写的。
    UCF文件的语法说明:
    1.语法
    UCF文件的语法为:
    {NET|INST|PIN} "signal_name" Attribute;
    其中,“signal_name”是指所约束对象的名字,包含了对象所在层次的描述;“Attribute”为约束的具体描述;语句必须以分号“;”结 束。可以用“#”或“”添加注释。需要注意的是:UCF文件是大小写敏感的,信号名必须和设计中保持大小写一致,但约束的关键字可以是大写、小写甚至大小 写混合。例如:
    NET "CLK" LOC = P30;
    “CLK”就是所约束信号名,LOC = P30;是约束具体的含义,将CLK信号分配到FPGA的P30管脚上。
    对于所有的约束文件,使用与约束关键字或设计环境保留字相同的信号名会产生错误信息,除非将其用" "括起来,因此在输入约束文件时,最好用" "将所有的信号名括起来。2.通配符
    在UCF文件中,通配符指的是“*”和“?”。“*”可以代表任何字符串以及空,“?”则代表一个字符。在编辑约束文件时,使用通配符可以快速选择一组信号,当然这些信号都要包含部分共有的字符串。例如:
    NET "*CLK?" FAST;
    将包含“CLK”字符并以一个字符结尾的所有信号,并提高了其速率。
    在位置约束中,可以在行号和列号中使用通配符。例如:
    INST "/CLK_logic 遍历level1种的模块,但不遍历更低层的模块管脚和区域约束语法(也可以通过Floorplanner约束)
    LOC约束是FPGA设计中最基本的布局约束和综合约束,能够定义基本设计单元在FPGA芯片中的位置,可实现绝对定位、范围定位以及区域定位。此外, LOC还能将一组基本单元约束在特定区域之中。LOC语句既可以书写在约束文件中,也可以直接添加到设计文件中。换句话说,ISE中的FPGA底层工具编辑器(FPGA Editor)、布局规划器(Floorplanner)和引脚和区域约束编辑器的主要功能都可以通过LOC语句完成。
    LOC语句语法
    INST "instance_name " LOC = location;
    其中“location”可以是FPGA芯片中任一或多个合法位置。如果为多个定位,需要用逗号“,”隔开,如下所示:
    LOC = location1,location2,...,locationx;
    目前,还不支持将多个逻辑置于同一位置以及将多个逻辑至于多个位置上。需要说明的是,多位置约束并不是将设计定位到所有的位置上,而是在布局布线过程中,布局器任意挑选其中的一个作为最终的布局位置。范围定位的语法为:
    INST “instance_name” LOC=location:location [SOFT];
    表 常用的LOC定位语句

    常用的LOC定位语句<br />

    使用LOC完成端口定义时,其语法如下:
    NET "Top_Module_PORT" LOC = "Chip_Port";
    其中,“Top_Module_PORT”为用户设计中顶层模块的信号端口,“Chip_Port”为FPGA芯片的管脚名。
    LOC语句中是存在优先级的,当同时指定LOC端口和其端口连线时,对其连线约束的优先级是最高的。

    2.LOC属性说明

    LOC语句通过加载不同的属性可以约束管脚位置、CLB、Slice、TBUF、块RAM、硬核乘法器、全局时钟、数字锁相环(DLL)以及DCM模块等资源,基本涵盖了FPGA芯片中所有类型的资源。由此可见,LOC语句功能十分强大,下表出了LOC的常用属性。

    时序约束的语法

    时序约束的语法(也可通过constraint editor约束)

    UCF文件中时序约束的语法

    约束UCF文件,从Constrains Editor直接输入是最方便、最直接的添加约束的方法了。以下是几种常用的语法:

    1)周期约束

    PERIOD约束是一个基本时序和综合约束,它附加在时钟网线上,时序分析工具根据PERIOD约束检查时钟域内所有同步元件的时序是否满足要求,它将检查与同步时序约束端口相连接的所有路径的延迟,但是不会检查PAD到寄存器的路径。

    附加时钟周期约束的首选方法(Preferred Method)语法如下:

    TIMESPEC “TS_identifier” = PERIOD “TNM_reference” period {HIGH|LOW} [high_or_low_time]

    其 中“[]”内为可选项,“{}”为必选项,参数period为要求的时钟周期,可以使用ps、ns、us或者ms等单位,大小写都可以,缺省单位为ns。 HIGH|LOW关键词指出时钟周期里的第一个脉冲是高电平还是低电平,而high_or_low_time为脉冲的延续时间,缺省单位也是ns,如果不 提供该项,则缺省占空比为50%。

    TIMESPEC是一个基本时序相关约束标识,表示本约束为时序规范。TSidentifier包括字母TS和一个标识符identifier(为ASCII码字符串)共同组成一个时序规范。

    例如定义时钟周期约束时,首先在时钟网线clk上附加一个TNM_NET约束,把clk驱动的所有同步元件定义为一个名为sys_clk的分组,然后使用TIMESPEC约束定义时钟周期。

    NET “clk” TNM_NET=”sys_clk”; #定义clk驱动的所有同步元件为sys_clk的分组

    TIMESPEC “TS_sys_clk”= PERIOD “sys_clk” 50 HIGH 30; #定义可引用的时序规范TS_sys_clk,

    #这个规范规定sys_clk组的时钟情况

    而定义派生时钟的语法如下:

    TIMESPEC “TSidentifier_2”=PERIOD “timegroup_name” “TSidentifier_1” [*or/] factor PHASE [+|-] phase_value [units]; #定义第二个时序规范TSidentifier_2,其内容是名为timegroup_name的分组是第

    #一个时序规范TSidentifier_1派生的

    其中TSidentifier_2为要定义的派生时钟,TSidentifier_1为已经定义的时钟,factor指出两者周期的辈数关系,是一个浮点数。phase_value指出两者之间的相位关系,为浮点数。例如:

    定义主时钟clk0:

    TIMESPEC “TS01” = PERIOD “clk0” 10.0 ns;

    定义派生时钟clk180,其相位与主时钟相差180°:

    TIMESPEC “TS02” = PERIOD “clk180” TS01 PHASE + 5.0 ns;

    定义派生时钟clk180_2,其周期为主时钟的1/2,并延迟2.5ns:

    TIMESPEC “TS03” = PERIOD “clk180_2” TS01 /2 PHASE + 2.5 ns;

    2)偏移约束

    偏 移约束规定了外部时钟和数据输入输出引脚之间的时序关系,只用于与PAD相连的(端口)信号,不能用于内部信号。使用该约束可以为综合实现工具指出输入数 据到达的时刻,或者输出数据稳定的时刻,从而在综合实现中调整布局布线过程,使正在开发的FPGA/CPLD的输入建立时间以及下一级电路的输入建立时间 满足要求。

    基本语法如下:

    OFFSET = {IN|OUT} “offset_time” [units] {BEFORE|AFTER} “clk_name” [TIMEGRP “group_name”];

    其中{IN|OUT}说明约束的是输入还是输出,offset_time为FPGA引脚数据变化与有效时钟沿之间的时间差,BEFORE|AFTER说明该时间差在有效时钟沿的前面还是后面,TIMEGRP “group_name”定义了约束的触发器组,缺省时约束该时钟驱动的所有触发器。

    3)分组约束

    使用TNM(Timing Name)约束可以选出构成一个分组的元件,并赋予一个名字,以便给它们附加约束。TNM_NET(timing name for nets)约束只加在网线上,其作用与TNM加在网上时基本相同,即把该网线所在路径上的所有有效同步元件作为命名组的一部分。不同之处在于当TNM约束加在PAD NET上时,TNM的值将被赋予PAD,而不是该网线所在的路径上的同步元件,即TNM约束不能穿过IBUF。而用TNM_NET约束就不会出现这种情况。

    4)专门约束

    附加约束的一般策略是首先附加整体约束,例如PERIOD、OFFSET等,然后对局部的电路附加专门约束,这些专门约束通常比整体约束宽松,通过在可能的地方尽量放松约束可以提高布线通过率,减小布局布线的时间。

    FROM_TO约束在两个组之间定义时序约束,对两者之间的逻辑和布线延迟进行控制,这两个组可以是用户定义的,也可以是与定义的。用户可以使用TNM_NET、TNM和TIMEGRP定义组,而与定义组主要包括FFS、LATCHES、PADS和RAMS等。语法如下:

    TIMESPEC “TSname” = FROM “group1” TO “group2” value;

    其中value为延迟时间,可以使具体数值或表达式。

    MAXDELAY约束定义了特定网线上的最大延迟,其语法如下:

    NET “net_name” MAXDELAY = value units;

    以上

    装载至http://www.voidcn.com/blog/makebuaa/article/p-2912074.html

  • 相关阅读:
    为图片指定区域添加链接
    数值取值范围问题
    【leetcode】柱状图中最大的矩形(第二遍)
    【leetcode 33】搜索旋转排序数组(第二遍)
    【Educational Codeforces Round 81 (Rated for Div. 2) C】Obtain The String
    【Educational Codeforces Round 81 (Rated for Div. 2) B】Infinite Prefixes
    【Educational Codeforces Round 81 (Rated for Div. 2) A】Display The Number
    【Codeforces 716B】Complete the Word
    一个简陋的留言板
    HTML,CSS,JavaScript,AJAX,JSP,Servlet,JDBC,Structs,Spring,Hibernate,Xml等概念
  • 原文地址:https://www.cnblogs.com/chengqi521/p/6112853.html
Copyright © 2011-2022 走看看