Sum vs Product
Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others)
Submit Status
Problem Description
Peter has just learned mathematics. He learned how to add, and how to multiply. The fact that 2 + 2 = 2 × 2 has amazed him greatly. Now he wants find more such examples. Peters calls a collection of numbers beautiful if the product of the numbers in it is equal to their sum.
For example, the collections {2, 2}, {5}, {1, 2, 3} are beautiful, but {2, 3} is not.
Given n, Peter wants to find the number of beautiful collections with n numbers. Help him!
Input
The first line of the input file contains n (2 ≤ n ≤ 500)
Output
Output one number — the number of the beautiful collections with n numbers.
Sample Input
2 5
Sample Output
1 3
Hint
The collections in the last example are: {1, 1, 1, 2, 5}, {1, 1, 1, 3, 3} and {1, 1, 2, 2, 2}.
题目大意:让你求1---n中任意选n个数字,保证这n个数字加和与乘积相等,问有多少种方法。
解题思路:暴力搜索,加上剪枝。我们从2开始枚举,因为从2开始,乘积总是比加和的上升速度快。那么如果前m个数的和加上剩下的n-m个1的值还是小于前m个数的乘积的话,那么继续枚举就不可能有让最后的和跟积相等的情况了。所以这个剪枝会很剪掉很多情况。
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int n,sum; void dfs(int cur,int sum1,int sum2,int dep){ if(sum1+(n-dep)<sum2){ return ; } if(sum1+(n-dep)==sum2){ sum++; return ; } for(int i=cur;i<=n;i++){ dfs(i,sum1+i,sum2*i,dep+1); } } int main(){ while(scanf("%d",&n)!=EOF){ sum=0; dfs(2,0,1,0); printf("%d ",sum); } return 0; }