zoukankan      html  css  js  c++  java
  • HDU 5505——GT and numbers——————【素数】

    GT and numbers

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 683    Accepted Submission(s): 190


    Problem Description
    You are given two numbers N and M.

    Every step you can get a new N in the way that multiply N by a factor of N.

    Work out how many steps can N be equal to M at least.

    If N can't be to M forever,print 1.
     
    Input
    In the first line there is a number T.T is the test number.

    In the next T lines there are two numbers N and M.

    T10001N1000000,1M263.

    Be careful to the range of M.

    You'd better print the enter in the last line when you hack others.

    You'd better not print space in the last of each line when you hack others.
     
    Output
    For each test case,output an answer.
     
    Sample Input
    3
    1 1
    1 2
    2 4
     
    Sample Output
    0
    -1
    1
     
    Source
     

    题目大意:

    解题思路:

    #include<stdio.h>
    #include<algorithm>
    #include<string.h>
    #include<iostream>
    #include<limits.h>
    using namespace std;
    typedef unsigned long long UINT;
    const int maxn = 1e6+2000;
    UINT prime[maxn];
    void getprime(){
        prime[0] = 1; prime[1] = 1;
        for(UINT i = 2; i*i <= maxn-10; i++){
            if(!prime[i])
            for(int j = i*i; j <= maxn-10 ;j += i){
                prime[j] = 1;
            }
        }
    }
    int main(){
        int T;
        getprime();
        scanf("%d",&T);
        UINT a,b;
        while(T--){
            scanf("%llu%llu",&a,&b);
            if(b < a){
                puts("-1");
            }else if(b == a){
                puts("0");
            }else{
                if(a == 1 || b%a != 0){
                    puts("-1");
                }else{
                    b /= a;
                    int sum = 0;
                    for(UINT i = 2; i <= maxn-100; i++){
                        if(prime[i]) continue;
                        UINT tmp = 1 , times = 0;
                        if(a % i != 0) continue;
                        while(a % i == 0){
                            a /= i;
                            tmp *= i;
                        }
                        while(b % tmp == 0){
                            b /= tmp;
                            tmp *= tmp;
                            times ++;
                        }
                        if(b % i == 0){
                            sum = times+1 > sum? times+1:sum;
                            while( b % i == 0){
                                b /= i;
                            }
                        }else{
                            sum = times > sum? times:sum;
                        }
                        if(b == 1){
                            break;
                        }
                    }
                    if(b == 1){
                        printf("%d
    ",sum);
                    }else{
                        puts("-1");
                    }
                }
            }
        }
        return 0;
    }
    

      

     
  • 相关阅读:
    【并发】实现内存可见的两种方法比较:加锁和volatile变量
    HTTP2资料汇总
    微服务框架servicecomb
    【并发】使用synchronized获取互斥锁的几点说明
    【并发】通过同步保证内存可见性
    数据最终一致性方案设计
    Oracle中Constraint的状态参数initially与deferrable
    ORACLE GROUPING函数的使用
    Oracle INSERT WITH CHECK OPTION的用法
    ORACLE VERSIONS 用法
  • 原文地址:https://www.cnblogs.com/chengsheng/p/4892680.html
Copyright © 2011-2022 走看看