Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。
代码如下:
for ( int i = 0; i < 节点个数; ++i ) { for ( int j = 0; j < 节点个数; ++j ) { for ( int k = 0; k < 节点个数; ++k ) { if ( Dis[i][k] + Dis[k][j] < Dis[i][j] ) { // 找到更短路径 Dis[i][j] = Dis[i][k] + Dis[k][j]; } } } }
但是这里我们要注意循环的嵌套顺序,如果把检查所有节点X放在最内层,那么结果将是不正确的,为什么呢?因为这样便过早的把i到j的最短路径确定下来了,而当后面存在更短的路径时,已经不再会更新了。
让我们来看一个例子,看下图:
图中红色的数字代表边的权重。如果我们在最内层检查所有节点X,那么对于A->B,我们只能发现一条路径,就是A->B,路径距离为9。而这显然是不正确的,真实的最短路径是A->D->C->B,路径距离为6。造成错误的原因就是我们把检查所有节点X放在最内层,造成过早的把A到B的最短路径确定下来了,当确定A->B的最短路径时Dis(AC)尚未被计算。所以,我们需要改写循环顺序,如下:
for ( int k = 0; k < 节点个数; ++k ) { for ( int i = 0; i < 节点个数; ++i ) { for ( int j = 0; j < 节点个数; ++j ) { if ( Dis[i][k] + Dis[k][j] < Dis[i][j] ) { // 找到更短路径 Dis[i][j] = Dis[i][k] + Dis[k][j]; } } } }
这样一来,对于每一个节点X,我们都会把所有的i到j处理完毕后才继续检查下一个节点。
那么接下来的问题就是,我们如何找出最短路径呢?这里需要借助一个辅助数组Path,它是这样使用的:Path(AB)的值如果为P,则表示A节点到B节点的最短路径是A->...->P->B。这样一来,假设我们要找A->B的最短路径,那么就依次查找,假设Path(AB)的值为P,那么接着查找Path(AP),假设Path(AP)的值为L,那么接着查找Path(AL),假设Path(AL)的值为A,则查找结束,最短路径为A->L->P->B。
那么,如何填充Path的值呢?很简单,当我们发现Dis(AX) + Dis(XB) < Dis(AB)成立时,就要把最短路径改为A->...->X->...->B,而此时,Path(XB)的值是已知的,所以,Path(AB) = Path(XB)。
实现:
//获得路径 void get_path(int i, int j) { ans_path[ans_len ++] = j; if (i == j) return; get_path(i, path[i][j]); } for (k = 1; k <= n; k ++) { for (i = 1; i <= n; i ++) { for (j = 1; j <=n; j ++) { if (d[i][j] > d[i][k] + d[k][j]) { d[i][j] = d[i][k] + d[k][j]; path[i][j] = path[k][j]; } } } }