zoukankan      html  css  js  c++  java
  • cf 167.d( 多重集全排列 )

    高中数学不好的娃实在是伤不起.


      一个公式:

    设多重集 S={ne1 , n2×e2,...nk×ek},令an为S的全排列数,则

    an=(n1+n2+...+nk)! / (n1!n2!...nk!) .


    然后这题就好做了.

    D. Dima and Two Sequences
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Little Dima has two sequences of points with integer coordinates: sequence (a1, 1), (a2, 2), ..., (an, n) and sequence (b1, 1), (b2, 2), ..., (bn, n).

    Now Dima wants to count the number of distinct sequences of points of length n that can be assembled from these sequences, such that the x-coordinates of points in the assembled sequence will not decrease. Help him with that. Note that each element of the initial sequences should be used exactly once in the assembled sequence.

    Dima considers two assembled sequences (p1, q1), (p2, q2), ..., (pn, qn) and (x1, y1), (x2, y2), ..., (xn, yn) distinct, if there is such i (1 ≤ i ≤ 2·n), that (pi, qi) ≠ (xi, yi).

    As the answer can be rather large, print the remainder from dividing the answer by number m.

    Input

    The first line contains integer n (1 ≤ n ≤ 105). The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109). The third line containsn integers b1, b2, ..., bn (1 ≤ bi ≤ 109). The numbers in the lines are separated by spaces.

    The last line contains integer m (2 ≤ m ≤ 109 + 7).

    Output

    In the single line print the remainder after dividing the answer to the problem by number m.

    Sample test(s)
    input
    1
    1
    2
    7
    output
    1
    input
    2
    1 2
    2 3
    11
    output
    2
    Note

    In the first sample you can get only one sequence: (1, 1), (2, 1).

    In the second sample you can get such sequences : (1, 1), (2, 2), (2, 1), (3, 2)(1, 1), (2, 1), (2, 2), (3, 2). Thus, the answer is 2.

    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #include <string>
    #include <iostream>
    using namespace std;
    
    typedef __int64 ll;
    
    struct node
    {
        int x,y;
    }g[1001000];
    ll sum;
    int n;
    ll MOD;
    int cmp(node x,node y)
    {
        if(x.x!=y.x) return x.x<y.x;
        else return x.y<y.y;
    
    }
    
    void fuc(int s,int t)
    {
        if(t-s==1) return ;
        
        ll cnt=0;
        for(int i=s;i<t;i++)
        {
            if(i==t-1)
            {
                cnt++;
                break;
            }
            if(g[i].y==g[i+1].y)
            {
                i++;
            }
            cnt++;
        }
        ll tmp=t-s-cnt;
        ll ttmp=1;
        for(int i=1;i<=t-s;i++)
        {
            ll ti=i;
            if(i%2==0&&tmp!=0)
            {
                ti=i/2;
                tmp--;
            }
            ttmp=(ttmp*ti)%MOD;
        }
        sum=(sum*ttmp)%MOD;
    }
    int main()
    {
        sum=1;
        int cnt=0;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            int tmp;
            scanf("%d",&tmp);
            g[cnt].x=tmp;
            g[cnt++].y=i;
        }
        for(int i=1;i<=n;i++)
        {
            int tmp;
            scanf("%d",&tmp);
            g[cnt].x=tmp;
            g[cnt++].y=i;
        }
        scanf("%I64d",&MOD);
        sort(g,g+cnt,cmp);
        int tmp=g[0].x;
        int f=0;
        for(int i=1;i<=cnt;i++)
        {
            if(g[i].x!=tmp||i==cnt)
            {
                fuc(f,i);
                if(i==cnt) break;
                f=i;
                tmp=g[i].x;
            }
        }
        printf("%I64d",sum);
        return 0;
    }
  • 相关阅读:
    洛谷——P2054 [AHOI2005]洗牌(扩展欧几里得,逆元)
    线性筛法(伪模板及。。。)
    洛谷——P3919 【模板】可持久化数组(可持久化线段树/平衡树)
    CF450B Jzzhu and Sequences(矩阵加速)
    洛谷——P1349 广义斐波那契数列(矩阵加速)
    P1269 信号放大器
    istio prometheus预警Prometheus AlertManager
    istio promethus收集不到数据
    KubeletNotReady runtime network not ready: NetworkReady=false reason:NetworkPluginNotReady message:docker: network plugin is not ready: cni config uninitialized
    centos7虚拟机设置静态ip
  • 原文地址:https://www.cnblogs.com/chenhuan001/p/2911228.html
Copyright © 2011-2022 走看看