zoukankan      html  css  js  c++  java
  • hdu 2586 (LCA)

    最近公共祖先。。 表示卡在一个位置卡了很久。。思维还是差了些,在一颗树上记录距离只需记录到根结点的距离,如果要求两个点的距离(一个点时另一个点的祖先)只需将他们到根结点的距离相减就行了.

    唉,其他的就是普通的LCA (离线)。

    等下去学有限的LCA

    How far away ?

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2412    Accepted Submission(s): 893


    Problem Description
    There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
     
    Input
    First line is a single integer T(T<=10), indicating the number of test cases.
      For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
      Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
     
    Output
    For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
     
    Sample Input
    2 3 2 1 2 10 3 1 15 1 2 2 3 2 2 1 2 100 1 2 2 1
     
    Sample Output
    10 25 100 100
     
    Source
     
    Recommend
    lcy
     
     
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #include <iostream>
    using namespace std;
    #define N 40040
    int n,m;
    
    struct node
    {
        int to;
        int next;
        int w;
    }edge[N*100];
    
    struct node1
    {
        int id,from,to,next;
    }edge1[2200];
    
    int cnt,pre[N];
    int cnt1,pre1[N];
    int mark[N];
    int bin[N],bw[N]; // 用bw 来记录
    int save[N];
    
    void add_edge(int u,int v,int w)
    {
        edge[cnt].to=v;
        edge[cnt].w=w;
        edge[cnt].next=pre[u];
        pre[u]=cnt++;
    }
    void add_edge1(int u,int v,int id)
    {
        edge1[cnt1].id=id;
        edge1[cnt1].from=u;
        edge1[cnt1].to=v;
        edge1[cnt1].next=pre1[u];
        pre1[u]=cnt1++;
    }
    
    int find(int v)
    {
        if(bin[v]==v) return v;
        return bin[v]=find(bin[v]);
    }
    
    void dfs(int s,int w)
    {
        mark[s]=1;
        bw[s]=w;
        for(int p=pre[s];p!=-1;p=edge[p].next)
        {
            int v=edge[p].to;
            if(mark[v]==0)
            {
                dfs(v,w+edge[p].w);
                bin[v]=s;
            }
        }
        for(int p=pre1[s];p!=-1;p=edge1[p].next)
        {
            int v=edge1[p].to;
            if(mark[v]==1) // 如果另一点已经查找过
            {
                if(save[edge1[p].id]==-1)
                {
                    int x=find(v);
                    save[edge1[p].id] = bw[v]-bw[x]+bw[s]-bw[x];
                }
            }
        }
    
    }
    
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {    
            cnt=0;
            memset(pre,-1,sizeof(pre));
            cnt1=0;
            memset(pre1,-1,sizeof(pre1));
            scanf("%d%d",&n,&m);
            for(int i=1;i<n;i++)
            {
                int x,y,key;
                scanf("%d%d%d",&x,&y,&key);
                add_edge(x,y,key);
                add_edge(y,x,key);
            }
            for(int i=0;i<m;i++)
            {
                int x,y;
                scanf("%d%d",&x,&y);
                add_edge1(x,y,i);
                add_edge1(y,x,i);
            }
            memset(save,-1,sizeof(save));
            memset(mark,0,sizeof(mark));
            for(int i=0;i<N;i++)
                bin[i]=i;
            memset(bw,0,sizeof(bw)); // 记录每个点到父亲结点的距离
            dfs(1,0);
            for(int i=0;i<m;i++)
            {
                printf("%d\n",save[i]);
            }
        }
        return 0;
    }
  • 相关阅读:
    程序员新年要实现的10个愿望
    编写超级可读代码的15个最佳实践
    LeetCode 最大子序和
    LeetCode 最大正方形
    LeetCode 买卖股票的最佳时机 II
    LeetCode 买卖股票的最佳时机
    B树和B+树
    SQL的几种连接
    LeetCode 无重复字符的最长子串
    LeetCode 翻转字符串里的单词
  • 原文地址:https://www.cnblogs.com/chenhuan001/p/2961439.html
Copyright © 2011-2022 走看看