zoukankan      html  css  js  c++  java
  • poj 2533 (LIS 最长递增子序列)

    采用的是 O(nlogn) 的算法。

    算法的关键是: 用一个数组g[i] 记录当前有i个元素的递增子序列的最后一个元素的最小值,因为g是单调的,所以可以用二分.

    Longest Ordered Subsequence
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 25957   Accepted: 11274

    Description

    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

    Input

    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

    Output

    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

    Sample Input

    7
    1 7 3 5 9 4 8

    Sample Output

    4
    

    Source

    Northeastern Europe 2002, Far-Eastern Subregion
    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    using namespace std;
    #define N 1010
    
    int g[N];
    
    int main()
    {
        int n;
        scanf("%d",&n);
        int cnt=0;
        memset(g,-1,sizeof(g));
        int k=0;
        for(int i=1;i<=n;i++)
        {
            int tmp;
            scanf("%d",&tmp);
            int b=0,d=k;
            while(b<d)
            {
                int mid=(b+d+1)/2;
                if(tmp > g[mid])
                {
                    b = mid;
                }
                else
                {
                    d = mid-1;
                }
            }
            if(g[b+1]==-1) g[b+1]=tmp;
            else g[b+1]=min(g[b+1],tmp);
            if(b+1>k) k=b+1;
        }
        printf("%d\n",k);
        return 0;
    }
  • 相关阅读:
    第七章-方法区
    wchar_t 字符拼接
    C++获取appdata路径
    char * 、BSTR、long、wchar_t *、LPCWSTR、string、QString类型转换
    climits 与 符号常量
    Qt数据结构-QString二:QString的arg能不能像Python的format一样使用
    Qt数据结构-QString一:常用方法
    怎么查看摄像头的硬件ID
    jenkins提示使用java11版本
    Jenkins:the input device is not a TTY
  • 原文地址:https://www.cnblogs.com/chenhuan001/p/2979760.html
Copyright © 2011-2022 走看看