描述
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
输入
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
输出
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
样例输入
5
9
1
0
5
4
3
1
2
3
0
样例输出
6
0
题目来源
求最小的交换次数,即求逆序对数问题,并归排序。
【并归排序】
如下演示并归排序的整个过程:
并归排序主要是深搜实现的。
{9,1,0,4,5,8,7,4,3}=>{9,1,0,4,5} {8,7,4,3}
{9,1,0,4,5}=>{9,1,0} {4,5}=>{9}{1}{0} {4}{5}
{8,7,4,3}=>{8,7} {4,3}=>{8}{7} {4}{3}
合并子表
{0,1,9} {4,5} {7,8} {3,4}
{0,1,4,5,9} {3,4,7,8}
{0,1,3,4,4,7,8,9}
#include <stdio.h> __int64 sum; void mergeSort(int* a,int low,int mid,int high){ int* p=new int[high+1]; int i=low; int j=low;//左侧表的起始位置 int h=mid+1;//右侧表的起始位置 while(h<=high&&j<=mid){ if(a[j]<=a[h]){ p[i]=a[j]; j++; i++; }else{ //求逆序数 sum+=h-i; p[i]=a[h]; h++; i++; } } for(;j<=mid;j++,i++){ p[i]=a[j]; } for(;h<=high;h++,i++){ p[i]=a[h]; } for(i=low;i<=high;i++){ a[i]=p[i]; } delete[] p; } void merge(int* a,int low,int high){ if(low<high){ int mid=(low+high)>>1; //划分子表 merge(a,low,mid); merge(a,mid+1,high); //合并子表 mergeSort(a,low,mid,high); } } int main() { int n; int arr[500010]; while(scanf("%d",&n)!=EOF && n){ for(int i=0; i<n; i++){ scanf("%d",&arr[i]); } sum=0; merge(arr,0,n-1); printf("%I64d ",sum); } return 0; }