回顾
前几篇对 k-means 有过理解和写了一版伪代码, 因为思想比较非常朴素, 就是初始化几个中心点, 然后通过计算距离的方式, "物以类聚", 不断迭代中心点, 最后收敛, (中心点不变化) 就搞定了, 代码也容易实现, 算法也基本不涉及数学, 感觉就是通用的全民入门算法. 跟 KNN 这种hello world 级别是一个等级, 简单易懂, 实用性高, 易实现.
而相对 EM 算法则有些难明白一些, 它涉及几个核心概念: 隐变量, 参数估计, 先验分布, 贝叶斯. 它所要解决的问题, 其实就是,当无法直接观测到总体参数时, 但有知道它是由其他隐含因子影响着的, 再此之下, 如何进行参数估计, 其实也就是咱当年学统计学中, 用样本来估计总体, 方法无非是,极大似然法, 全概率与贝叶斯, 高斯分布 这些基础知识而已.
为了说明EM算法, 显示以扔硬币 的小案例来直观认识 EM 算法的 E, M 步骤分别是做了什么事情, 从比较直观来看, 然后有引入高斯混合模型 来深刻推导了一波EM算法, 同时证明了EM算法的收敛性. 推导的难点在于, **如何去定义 **
E, M步骤, 然后技巧上是用了Jensen不等式, 并引入了 concave函数的特性(全局最优解), 过程其实就用到了高斯分布, 化简用的是全概率 与贝叶斯的关系, 也就是全概率, 联合分布, 条件概率..这些基础知识, 嗯. 总体来说还是不难的, 可能写代码实现有点小复杂, 后面试着整一整, 这里主要重点整透理论, 代码会copy 就差不多行了.
K-means 与 EM
其实, 不难发现, 高斯混合模型(Mixture of Gaussian) EM 算法与 K-means 是相似的. K-means 从 EM 视角来看,
- Expectation : 每一个点赋值(概率为1)一个 cluster
- Maximization: 更新每一个 cluster 的中心
由此可得到:K-means 算法其实是EM算法的一种特殊情况.
K-means 选择将一个数据点归为一个 cluster (概率100%, hard decision); 而 EM 算法选择将一个数据点看作是多个cluster (或分布) 的混合物(soft decision).
case: 人的气质类型
(补一下性格的本质: 是习惯, 习惯决定性格, 性格决定命运, 是有科学性滴)
记得以前学心理学的时候, 谈到气质类型的章节, 一种经典的体液分法(5世纪前), 认为人体有四种液体, 不同的体液比例混合形成了四种典型气质类型:
- 多血质: 活泼, 敏感, 好动, 反应快, 喜欢交往...., 典型人物: 王熙凤, 姚明, 科比, 詹姆斯
- 胆汁质: 直率, 热情, 冲动, 情绪化... 典型人物: 张飞, 鲁智深, 奥尼尔, 恩比德
- 粘液质: 安静, 稳重, 反应慢, 沉默寡言, 善于忍耐, 典型人物: 鲁肃, 司马懿, 邓肯, 卡哇伊
- 抑郁质: 孤僻, 行动迟缓, 体验深刻, 多愁善感, 善于察觉细节... 典型人物: 林黛玉, 罗斯
需求: 如何通过一个的性格(行为习惯) 来判断小陈同学的气质类型
- K-means: 小陈同学比较孤僻, 沉默寡言, 总沉浸在自己的世界... 但偶尔也活泼好动..嗯, 就判定为抑郁型
- EM: 综合来看, 小陈同学有 30%是多血的, 50%是粘液的, 抑郁, 胆汁各10%, 嗯...大概率, 偏向粘液质一点.
从偏理论来看
E-步骤
K-means 的 (r_{nk}) 判断每个样本属于对应的类别 k
def (r_{nk}) :
IF (k = arg min_j ||x_n - u_k||^2) :
return 1
ELSE:
return 0
就是逐个计算每个样本到各中心距离, 离哪个近,就归为该类, 复杂度是 O(kn)
就相当于咱之前推导高斯混合里面的 (w_j^{(i)})
EM 的判别则为:
(p^{(i)} (k|n) = frac {p_k^{(i)} g(x_n; m_k^{(i)} sigma_k^{(i)})}{sum limits _{m=1}^K p_k^{(i)} g(x_n; m_k^{(i)} sigma_k^{(i)})})
就是一个全概率下的贝叶斯嘛.
def $P(k|n) $ :
IF (k = arg max _s p(s| x_n, m_k, sigma_k)) :
return 1
ELSE:
return 0
M-步骤
K-means 就是在遍历完一轮后, 进行中心点的更新
(mu_k = frac {sum limits _{n} r_{nk} x_n}{sum limits _{n} r_{nk}})
就是将当前该类别下的所有点, 加起来, 再求平均, 得到中心
EM 也是做一样的事情呀
(m_k^{(i+1)} = frac {sum limits _{n=1}^N p^{(i)}(k|n)x_n} {sum limits _{n=1}^N p^{(i)}(k|n)})
就到这里吧, 这篇主要是回忆和小结一波 k-means 和 EM算法, 感觉EM算法整明白了对自信心提升还是蛮大的, 因为它涉及概率分布, 参数估计, 最大似然, 贝叶斯等, 这些都是概率论的核心知识点呀, 是需要一定功力的哦.