题目描述:
A 3 x 3 magic square is a 3 x 3 grid filled with distinct numbers from 1 to 9 such that each row, column, and both diagonals all have the same sum.
Given an grid
of integers, how many 3 x 3 "magic square" subgrids are there? (Each subgrid is contiguous).
Example 1:
Input: [[4,3,8,4],
[9,5,1,9],
[2,7,6,2]]
Output: 1
Explanation:
The following subgrid is a 3 x 3 magic square:
438
951
276
while this one is not:
384
519
762
In total, there is only one magic square inside the given grid.
Note:
1 <= grid.length <= 10
1 <= grid[0].length <= 10
0 <= grid[i][j] <= 15
要完成的函数:
int numMagicSquaresInside(vector<vector<int>>& grid)
说明:
1、这道题给定一个二维的vector,也就是一个矩阵,要求判断这个矩阵中含有多少个magic三维矩阵,返回数量。
magic三维矩阵的定义是,所有数值都在1-9之间(闭区间),且每一行、每一列和每条对角线的和都相等(也就是15)。
2、这是一道简单题,我们直接暴力处理就好了。
首先,我们判断每个子矩阵的中心点是不是为5。这一步可以过滤掉很多子矩阵。
接着,判断符号第一个条件的子矩阵的所有9个数,是不是都在1-9之间。在测试样例中,出现了包含0和10这样的数的子矩阵,也可以形成magic矩阵。
最后,判断三行、三列和两条对角线的和是否为15。
代码构造如下:(附详解)
int numMagicSquaresInside(vector<vector<int>>& grid)
{
int hang=grid.size(),lie=grid[0].size(),res=0;
for(int i=1;i<=lie-2;i++)
{
for(int j=1;j<=lie-2;j++)//从第二行第二列开始判断中心点,直到倒数第二行倒数第二列结束
{
if(grid[i][j]==5)//满足第一个条件
{
if(grid[i-1][j-1]<=9&&grid[i-1][j-1]>=1&&
grid[i-1][j]<=9&&grid[i-1][j]>=1&&
grid[i-1][j+1]<=9&&grid[i-1][j+1]>=1&&
grid[i][j-1]<=9&&grid[i][j-1]>=1&&
grid[i][j+1]<=9&&grid[i][j+1]>=1&&
grid[i+1][j-1]<=9&&grid[i+1][j-1]>=1&&
grid[i+1][j]<=9&&grid[i+1][j]>=1&&
grid[i+1][j+1]<=9&&grid[i+1][j+1]>=1)//判断是否都在1-9之间
{
if((grid[i-1][j-1]+grid[i-1][j]+grid[i-1][j+1]==15)&&
(grid[i][j-1]+grid[i][j]+grid[i][j+1]==15)&&
(grid[i+1][j-1]+grid[i+1][j]+grid[i+1][j+1]==15)&&
(grid[i-1][j-1]+grid[i][j-1]+grid[i+1][j-1]==15)&&
(grid[i-1][j]+grid[i][j]+grid[i+1][j]==15)&&
(grid[i-1][j+1]+grid[i][j+1]+grid[i+1][j+1]==15)&&
(grid[i-1][j-1]+grid[i][j]+grid[i+1][j+1]==15)&&
(grid[i-1][j+1]+grid[i][j]+grid[i+1][j-1]==15))//判断三行三列和两条对角线的和是否为15
res++;
}
}
}
}
return res;
}
上述代码实测5ms,因为服务器没有充分的提交量,所以没有打败的百分比。