zoukankan      html  css  js  c++  java
  • 大数据技术之_23_Python核心基础学习_03_函数 + 对象(12.5小时)

    第五章 函数5.1 函数的简介5.2 函数的参数5.3 函数参数传递的方式5.4 函数的不定长参数5.5 函数的返回值5.6 函数的文档字符串--函数的说明5.7 变量的作用域与命名空间5.8 函数的递归5.9 高阶函数5.10 函数的闭包5.11 装饰器--扩展函数的功能第六章 对象6.1 面向对象6.2 类的简介6.3 类的定义+类的属性和方法6.4 类的特殊方法6.5 封装6.5.1 隐藏类中的属性6.5.2 property 装饰器6.6 继承6.6.1 继承的简介6.6.2 方法的重写6.6.3 super()6.6.4 多重继承6.7 多态6.8 类中的属性和方法6.9 垃圾回收6.10 特殊方法(魔术方法)6.11 模块化6.11.1 模块的创建6.11.2 模块的使用6.11.3 包6.11.4 Python 标准库


    第五章 函数

    5.1 函数的简介

    - 函数也是一个对象
    -   对象是内存中专门用来存储数据的一块区域
    -   函数可以用来保存一些可执行的代码,并且可以在需要时,对这些语句进行多次的调用
    - 创建函数(定义函数):
        def 函数名([形参1, 形参2, ..., 形参n]) :
            代码块

        - 函数名必须要符和标识符的规范
            (可以包含字母、数字、下划线、但是不能以数字开头)    
    - 函数中保存的代码不会立即执行,需要调用函数代码才会执行
    - 调用函数:
        函数对象()
    - 定义函数一般都是要实现某种功能的

    函数的简介--示例代码:

    # 比如有如下三行代码,这三行代码是一个完整的功能:
    # print('hello')
    # print('你好')
    # print('再见')

    # 定义一个函数
    def fn() :
        print('这是我的第一个函数!')
        print('hello')
        print('今天天气真不错!')

    # 打印 fn
    # print(fn)         # <function fn at 0x03D2B618>
    # print(type(fn))   # <class 'function'>

    # fn 是函数对象  fn() 是调用函数
    # print 是函数对象 print() 是调用函数
    # fn()

    # 定义一个函数,可以用来求任意两个数的和
    # def sum() :
    #     a = 123
    #     b = 456
    #     print(a + b)

    # sum()

    # 定义函数时指定形参
    def fn2(a, b) :
        # print('a =', a)
        # print('b =', b)
        print(a, "+", b, "=", a + b)

    # 调用函数时,来传递实参
    fn2(1020)
    fn2(123456)

    5.2 函数的参数

    - 在定义函数时,可以在函数名后的()中定义数量不等的形参。
        多个形参之间使用,隔开
    - 形参(形式参数),定义形参就相当于在函数内部声明了变量,但是并不赋值
    - 实参(实际参数)
        - 如果函数定义时,指定了形参,那么在调用函数时也必须传递实参,实参将会赋值给对应的形参,简单来说,有几个形参就得传几个实参。

    练习1:
      定义一个函数,可以用来求任意三个数的乘积。
    练习2:
      定义一个函数,可以根据不同的用户名显示不同的欢迎信息。

    示例代码:

    # 求任意三个数的乘积
    def mul(a, b, c) :
        print(a * b * c)

    # 根据不同的用户名显示不同的欢迎信息   
    def welcome(username) :
        print('欢迎', username, '光临')

    # mul(1, 2, 3)
    # welcome('孙悟空')

    5.3 函数参数传递的方式

    # 定义一个函数
    #   定义形参时,可以为形参指定默认值
    #   指定了默认值以后,如果用户传递了参数则形参默认值没有任何作用,如果用户没有传递参数,则形参默认值就会生效。
    def fn(a = 5, b = 10, c = 20) :
        print('a =', a)
        print('b =', b)
        print('c =', c)

    # fn(1, 2, 3)
    # fn(1, 2)
    # fn()

    # 实参的传递方式
    # 位置参数
    #   位置参数:就是将对应位置的实参赋值给对应位置的形参
    #   第一个实参赋值给第一个形参,第二个实参赋值给第二个形参,......
    # fn(1, 2, 3)

    # 关键字参数
    #   关键字参数:可以不按照形参定义的顺序去传递,而直接根据参数名去传递参数
    # fn(b=1, c=2, a=3)
    # print('hello', end='')    # end 就是关键字参数

    #   位置参数和关键字参数可以混合使用
    #   混合使用位置参数和关键字参数时,必须将位置参数写到前面,且位置参数和关键字参数指定的位置不能相同。
    # fn(1, c=30)   # a = 1, b = 10, c = 30

    # fn(1, a=30)   # 报错

    def fn2(a) :
        print('a =', a)

    # 函数在调用时,解析器不会检查实参的类型
    # 实参可以传递任意类型的对象
    b = 123
    b = True
    b = 'hello'
    b = None
    b = [123]

    # fn2(b)    
    # fn2(fn)   # 没问题,实参可以是函数对象

    def fn3(a , b) :
        print(a + b)
    # fn3(123, "456")   # 报错

    def fn4(a) :
        # 在函数中对形参进行重新赋值,不会影响其他的变量
        # a = 20
        # a 是一个列表,我们尝试修改列表中的元素
        # 如果形参执行的是一个对象,当我们通过形参去修改对象的值时,会影响到所有指向该对象的变量。
        a[0] = 30
        print('a =', a, id(a))

    c = 10   
    c = [123

    # fn4(c)
    # fn4(c.copy()) # 列表副本,新的对象
    # fn4(c[:])     # 列表副本,新的对象

    # print('c =', c, id(c))

    5.4 函数的不定长参数

    # 不定长的参数
    # 定义一个函数,可以求任意个数字的和
    def sum(*nums) :
        # 定义一个变量,来保存结果
        result = 0
        # 遍历元组,并将元组中的数进行累加
        for n in nums :
            result += n
        print(result)

    # sum(123, 456, 789, 10, 20, 30, 40)

    # 在定义函数时,可以在形参前边加上一个*,这样这个形参将会获取到所有的实参
    # 它将会将所有的实参保存到一个元组中
    # a, b, *c = (1, 2, 3, 4, 5, 6)     # 元组的解包(解构)

    # *a 会接受所有的位置实参,并且会将这些实参统一保存到一个元组中(参数的装包)
    def fn(*a) :
        print("a =", a, type(a))    # a = (1, 2, 3, 4, 5) <class 'tuple'>
    fn(12345)

    # 带星号的形参只能有一个
    # 带星号的参数,可以和其他参数配合使用
    # 第一个参数给 a,第二个参数给 b,剩下的都保存到 c 的元组中
    def fn2(a, b, *c) :
        print('a =', a)   # a = 1
        print('b =', b)   # b = 2
        print('c =', c)   # c = (3, 4, 5)
    fn2(12345)

    # 可变参数不是必须写在最后,但是注意,带*的参数后的所有参数,必须以关键字参数的形式传递
    # 第一个参数给 a,剩下的位置参数给 b 的元组,c 必须使用关键字参数
    def fn2(a, *b, c) :
        print('a =', a)   # a = 1
        print('b =', b)   # b = (2, 3, 4)
        print('c =', c)   # c = 5
    fn2(1234, c=5)

    # 所有的位置参数都给a,b 和 c 必须使用关键字参数
    def fn2(*a, b, c) :
        print('a =',a)    # a = (1, 2, 3)
        print('b =',b)    # b = 4
        print('c =',c)    # c = 5
    fn2(123, b=4, c=5)

    # 如果在形参的开头直接写一个*,则要求我们的所有的参数必须以关键字参数的形式传递
    def fn2(*, a, b, c) :
        print('a =', a)     # a = 3
        print('b =', b)     # b = 4
        print('c =', c)     # c = 5
    fn2(a=3, b=4, c=5)

    # *形参只能接收位置参数,而不能接收关键字参数
    def fn3(*a) :
        print('a =', a)   # a = (1, 2, 3, 4, 5)
    fn3(12345)

    # **形参可以接收其他的关键字参数,它会将这些参数统一保存到一个字典中
    #   字典的 key 就是参数的名字,字典的 value 就是参数的值
    # **形参只能有一个,并且必须写在所有参数的最后
    def fn3(b, c, **a) :
        print('a =', a, type(a))    # a = {'d': 2, 'e': 10, 'f': 20} <class 'dict'>
        print('b =', b)     # b = 1
        print('c =', c)     # c = 3
    fn3(b=1, d=2, c=3, e=10, f=20)

    # 参数的解包(拆包)
    def fn4(a, b, c) :
        print('a =', a)
        print('b =', b)
        print('c =', c)

    # 创建一个元组
    t = (102030)
    # 创建一个列表
    # t = [10, 20, 30]

    # 传递实参时,也可以在序列类型的参数前添加星号,这样它会自动将序列中的元素依次作为参数传递
    # 这里要求序列中元素的个数必须和形参的个数的一致
    # fn4(t[0], t[1], t[2])     # 此种方式太麻烦了
    fn4(*t)     # 解包的方式

    # 创建一个字典
    d = {'a':100'b':200'c':300}
    # 通过 ** 来对一个字典进行解包操作
    fn4(**d)

    5.5 函数的返回值

    # 返回值,返回值就是函数执行以后返回的结果
    # 可以通过 return 来指定函数的返回值
    # 可以直接使用函数的返回值,也可以通过一个变量来接收函数的返回值

    def sum(*nums) :
        # 定义一个变量,来保存结果
        result = 0
        # 遍历元组,并将元组中的数进行累加
        for n in nums :
            result += n
        print(result)

    # sum(123, 456, 789)

    # return 后边跟什么值,函数就会返回什么值
    # return 后边可以跟任意的对象,返回值甚至可以是一个函数
    def fn() :
        # return 'hello'
        # return [1, 2, 3]
        # return {'k':'v'}
        def fn2() :
            print('hello')
        return fn2      # 返回值也可以是一个函数

    r = fn()    # 这个函数的执行结果就是它的返回值
    # r()
    # print(fn())
    # print(r)

    # 如果仅仅写一个 return 或者不写 return,则相当于 return None 
    def fn2() :
        a = 10
        return 

    # 在函数中,return 后的代码都不会执行,return 一旦执行,则函数自动结束
    def fn3():
        print('hello')
        return
        print('abc')
    # r = fn3()
    # print(r)

    def fn4() :
        for i in range(5) :     # 生成一个这样的自然数序列:[0, 1, 2, 3, 4]
            if i == 3 :
                # break 用来退出当前循环
                # continue 用来跳过当次循环
                return # 用来结束函数
            print(i)
        print('循环执行完毕!')

    # fn4()

    def sum(*nums) :
        # 定义一个变量,来保存结果
        result = 0
        # 遍历元组,并将元组中的数进行累加
        for n in nums :
            result += n
        return result

    r = sum(123456789)

    # print(r + 778)

    def fn5():
        return 10

    # fn5 和 fn5() 的区别
    print(fn5)      # fn5 是函数对象,打印 fn5 实际是在打印函数对象:<function fn5 at 0x05771BB8>
    print(fn5())    # fn5() 是在调用函数,打印 fn5() 实际上是在打印 fn5() 函数的返回值:10

    5.6 函数的文档字符串--函数的说明

    # help() 是 Python 中的内置函数
    #   通过 help() 函数可以查询 python 中的函数的用法
    #   语法:help(函数对象)
    #   help(print)     # 获取 print() 函数的使用说明

    # 文档字符串(doc str)
    #   在自定义函数时,可以在函数内部编写文档字符串,文档字符串就是【函数的说明】,建议使用英文编写,哈哈!
    #   当我们编写了文档字符串时,就可以通过 help() 函数来查看自定义函数的说明
    #   文档字符串非常简单,其实直接在函数的第一行写一个字符串就是文档字符串,单引号和双引号均可,但是一般使用 三重引号,因为三重引号可以换行,并且会保留字符串中的格式。
    def fn(a: int, b: bool, c: str='hello') -> int :
        '''
            这是一个文档字符串的示例

            函数的作用:......
            函数的参数:
                a,作用,类型,默认值......
                b,作用,类型,默认值......
                c,作用,类型,默认值......
        '''

        return 10

    help(fn)

    5.7 变量的作用域与命名空间

    # 作用域(scope)
    #   作用域指的是变量生效的区域
    b = 20  # 全局变量

    def fn() :
        a = 10  # a定义在了函数内部,所以它的作用域就是函数内部,函数外部无法访问
        print('函数内部:''a =', a)
        print('函数内部:''b =', b)

    # fn()    

    print('函数外部:''a =', a)
    print('函数外部:''b =', b)

    # 在 Python 中一共有两种作用域:
    #  全局作用域
    #   - 全局作用域在程序执行时创建,在程序执行结束时销毁
    #   - 所有函数以外的区域都是全局作用域
    #   - 在全局作用域中定义的变量,都属于全局变量,全局变量可以在程序的任意位置被访问
    #  函数作用域
    #   - 函数作用域在函数调用时创建,在调用结束时销毁
    #   - 函数每调用一次就会产生一个新的函数作用域
    #   - 在函数作用域中定义的变量,都是局部变量,它只能在函数内部被访问
    #   
    #  变量的查找--就近原则
    #   - 当我们使用变量时,会优先在当前作用域中寻找该变量,如果有则使用,
    #       如果没有,则继续去上一级作用域中寻找,如果有则使用,
    #       如果依然没有,则继续去上一级作用域中寻找,以此类推
    #       直到找到全局作用域,依然没有找到,则会抛出异常:NameError: name 'a' is not defined

    def fn2() :
        def fn3() :
            print('fn3中:''a =', a)
        fn3()

    # fn2()    


    a = 20
    def fn3() :
        # a = 10    # 在函数中为变量赋值时,默认都是为局部变量赋值
        # 如果希望在函数内部修改全局变量,则需要使用 global 关键字,来声明变量
        global a    # 声明在函数内部使用的 a 是全局变量,此时再去修改 a 时,就是在修改全局的 a
        a = 10      # 修改全局变量
        print('函数内部:''a =', a)

    # fn3()
    # print('函数外部:', 'a =', a)

    -------------------------------------------------------------------------------------

    # 命名空间(namespace)
    #   命名空间指的是变量存储的位置,每一个变量都需要存储到指定的命名空间当中
    #   每一个作用域都会有一个它对应的命名空间
    #   全局的命名空间,用来保存全局变量
    #   函数的命名空间,用来保存函数中的变量(局部变量)
    #   命名空间实际上就是一个字典,是一个专门用来存储变量的字典

    # locals() 用来获取当前作用域的命名空间
    #   如果在全局作用域中调用 locals(),则获取的是全局命名空间
    #   如果在函数作用域中调用 locals(),则获取的是函数的命名空间
    #   返回的是一个字典
    a = 10
    scope = locals()    # 获取当前命名空间
    print(scope)
    print(type(scope))  # <class 'dict'>

    # print(a)          # 10
    # print(scope['a']) # 10

    # 向 scope 中添加一个 key-value
    scope['c'] = 1000   # 向字典中添加 key-value 就相当于在全局中创建了一个全局变量(一般不建议这么做)
    print(c)

    def fn4() :
        a = 10
        # scope = locals()  # 在函数内部调用 locals(),则会获取到函数的命名空间
        # scope['b'] = 20   # 通过函数的命名空间创建一个局部变量,但是也是不建议这么做,这样做的不清晰,阅读起来费劲
        # print(scope)      # {'a' : 10, 'b' : 20}

        global_scope = globals()    # globals() 函数可以用来在任意位置获取全局命名空间
        print(global_scope['a'])    # 获取全局变量的值
        global_scope['a'] = 30      # 修改全局变量的值

    fn4()

    5.8 函数的递归

    # 尝试求10的阶乘(10!)
    # 1! = 1
    # 2! = 1*2 = 2
    # 3! = 1*2*3 = 6
    # 4! = 1*2*3*4 = 24

    # print(1*2*3*4*5*6*7*8*9*10)

    # 创建一个变量保存结果
    # n = 10
    # for i in range(1, 10) :   # 生成一个这样的自然数序列:[1, 2, 3, 4, 5, 6, 7, 8, 9]
    #     n *= i    # n = n * i # 第一次:10 = 10 * 1,第二次:20 = 10 * 2,第三次:60 = 20 * 3,......

    # print(n)

    # 创建一个函数,可以用来求任意数的阶乘
    def factorial(n) :
        '''
            该函数用来求任意数的阶乘
            参数:
                n 要求阶乘的数字
        '''

        # 创建一个变量,来保存结果
        result = n
        for i in range(1, n) :
            result *= i
        return result    

    # 求10的阶乘    
    # print(factorial(10))

    -------------------------------------------------------------------------------------

    # 递归式的函数
    #   从前有座山,山里有座庙,庙里有个老和尚讲故事,讲的什么故事呢?
    #       从前有座山,山里有座庙,庙里有个老和尚讲故事,讲的什么故事呢?
    #           从前有座山,山里有座庙,庙里有个老和尚讲故事,讲的什么故事呢?
    #               ....
    # 递归简单理解就是自己去引用自己!
    # 递归式函数:在函数中自己调用自己!

    # 无穷递归:如果这个函数被调用,程序的内存会溢出,效果类似于死循环
    # def fn() :
    #     fn()

    # fn()

    # 递归是解决问题的一种方式,它和循环很像
    #   它的整体思想是:将一个大问题分解为一个个的小问题,直到问题无法分解时,再去解决问题

    # 递归式函数的两个必要条件:
    #   1.基线条件
    #       - 问题可以被分解为的最小问题,当满足基线条件时,递归就不在执行了
    #   2.递归条件
    #       - 将问题继续分解的条件

    # 递归和循环类似,基本是可以互相代替的
    #   循环编写起来比较容易,阅读起来稍难
    #   递归编写起来难,但是方便阅读

    # 10! = 10 * 9!
    # 9! = 9 * 8!
    # 8! = 8 * 7!
    # ......
    # 1! = 1

    def factorial(n) :
        '''
            该函数用来求任意数的阶乘
            参数:
                n 要求阶乘的数字
        '''

        # 基线条件:判断n是否为1,如果为1,则此时不能再继续递归
        if n == 1 :
            # 1的阶乘就是1,直接返回1
            return 1
        # 递归条件:  
        return n * factorial(n-1)   # n * (n - 1)!

    print(factorial(10))

    # 递归练习1:
    #   创建一个函数 power 来为任意数字做幂运算 n ** i
    #   10 ** 5 = 10 * 10 ** 4
    #   10 ** 4 = 10 * 10 ** 3
    #   ...
    #   10 ** 1 = 10
    def power(n, i) :
        '''
            power() 用来为任意的数字做幂运算
            参数:
                n 要做幂运算的数字
                i 做幂运算的次数
        '''

        # 基线条件
        if i == 1 :
            # 求1次幂
            return n
        # 递归条件
        return n * power(n, i-1)    # n * (n ** (i-1))

    # print(power(8, 6))    


    # 递归练习2:
    #   创建一个函数,用来检查一个任意的字符串是否是回文字符串,如果是返回 True,否则返回 False
    #   回文字符串,字符串从前往后念和从后往前念是一样的
    #       abcba

    #   abcdefgfedcba
    #   先检查第一个字符和最后一个字符是否一致:
    #       如果不一致,则不是回文字符串
    #       如果一致,则看剩余的部分是否是回文字符串
    #   检查 abcdefgfedcba 是不是回文
    #   检查 bcdefgfedcb 是不是回文
    #   检查 cdefgfedc 是不是回文
    #   检查 defgfed 是不是回文
    #   检查 efgfe 是不是回文
    #   检查 fgf 是不是回文
    #   检查 g 是不是回文

    def hui_wen(s) :
        '''
            该函数用来检查指定的字符串是否回文字符串,如果是返回True,否则返回False
            参数:
                s:就是要检查的字符串
        '''

        # 基线条件
        if len(s) < 2 :
            # 字符串的长度小于2,则字符串一定是回文
            return True
        elif s[0] != s[-1] :
            # 第一个字符和最后一个字符不相等,则不是回文字符串
            return False    
        # 递归条件    
        return hui_wen(s[1-1])     # [1: -1] 包头不包尾

    # def hui_wen(s) :
    #     '''
    #         该函数用来检查指定的字符串是否回文字符串,如果是返回 True,否则返回 False
    #         参数:
    #             s:就是要检查的字符串
    #     '''
    #     # 基线条件
    #     if len(s) < 2 :
    #         # 字符串的长度小于2,则字符串一定是回文
    #         return True
    #     # 递归条件    
    #     return s[0] == s[-1] and hui_wen(s[1: -1])

    print(hui_wen('abcdefgfedcba'))    

    回文字符串图解如下:

    5.9 高阶函数

    函数式编程:Python 支持函数式编程,但是 Python 不是函数式编程语言,Scala 是函数式编程。
        - 在 Python 中,函数是一等对象
        - 一等对象一般都会具有如下特点:
            ① 对象是在运行时创建的
            ② 能赋值给变量或作为数据结构中的元素
            ③ 能作为参数传递
            ④ 能作为返回值返回

        - 高阶函数
            - 高阶函数至少要符合以下两个特点中的一个
              ① 接收一个或多个函数作为参数
              ② 将函数作为返回值返回

        - 装饰器

    高阶函数--示例代码:

    # 高阶函数
    #   接收一个或多个函数作为参数,或者将函数作为返回值的函数是高阶函数。
    #   当我们使用一个函数作为参数时,实际上是将指定的代码传递进了目标函数。

    # 创建一个列表
    l = [12345678910]

    # 定义一个函数:可以将指定列表中的所有的偶数,保存到一个新的列表中返回

    # 定义一个函数:这个函用来检查一个任意的数字是否是偶数
    def fn2(i) :
        if i % 2 == 0 :
            return True
        return False    

    # 定义一个函数:这个函数用来检查指定的数字是否大于5
    def fn3(i) :
        if i > 5 :
            return True    
        return False

    # 定义一个函数:这个函数用来检查指定的数字是否是3个倍数   
    def fn4(i) :
        return i % 3 == 0

    def fn(func, lst) :
        '''
            fn() 函数可以将指定列表中的所有偶数获取出来,并保存到一个新列表中返回
            参数:
                lst:要进行筛选的列表
        '''

        # 创建一个新列表
        new_list = []

        # 对列表进行筛选
        for n in lst :
            # 功能
            if func(n) :
                new_list.append(n)

        # 返回新列表
        return new_list

    # print(fn(fn2, l))
    # print(fn(fn3, l))
    # print(fn(fn4, l))

    -------------------------------------------------------------------------------------

    # filter()
    #   filter() 可以从序列中过滤出符合条件的元素,保存到一个新的序列中
    # 参数:
    #   1.函数,根据该函数来过滤序列(可迭代的结构)
    #   2.需要过滤的序列(可迭代的结构)
    # 返回值:
    #   过滤后的新序列(可迭代的结构)

    # print(filter(fn4, l))             # <filter object at 0x0000017CAC9E0390>
    # print(list(filter(fn4, l)))       # [3, 6, 9]

    # fn4 是作为参数传递进 filter() 函数中
    #   而 fn4 实际上只有一个作用,就是作为 filter() 的参数
    #   filter() 调用完毕以后,fn4 就已经没用

    -------------------------------------------------------------------------------------

    # 匿名函数 = lambda 函数表达式 (语法糖:简写)
    #   lambda 函数表达式专门用来创建一些简单的函数,它是函数创建的又一种方式
    #   语法:lambda 参数列表 : 返回值
    #   匿名函数一般都是作为参数使用,其它地方一般不会使用,功能复杂时,就不要再使用匿名函数了!

    def fn5(a, b) :
        return a + b

    lambda a, b : a + b

    # (lambda a, b : a + b)(10, 30)     # 调用匿名函数,但一般不会这么做
    # 也可以将匿名函数赋值给一个变量,但一般不会这么做,相当于给函数起名字了
    fn6 = lambda a, b : a + b
    # print(fn6(10, 30))

    r = filter(lambda i : i > 5, l)
    # print(list(r))

    -------------------------------------------------------------------------------------

    # map()
    #   map() 函数可以对可迭代的对象中的所有元素做指定的操作,然后将其添加到一个新的对象中返回
    l = [12345678910]
    r = map(lambda i : i ** 2, l)
    # print(list(r))    # [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

    -------------------------------------------------------------------------------------

    # sort()
    #   该方法用来对列表中的元素进行排序
    #   sort() 方法默认是直接比较列表中的元素的大小
    #   在 sort() 中可以接收一个关键字参数 key
    #       key 需要一个函数作为参数,当设置了函数作为参数,每次都会以列表中的一个元素作为参数来调用函数,并且使用函数的返回值来比较元素的大小
    l = ['bb''aaaa''c''ddddddddd''fff']
    # l.sort(key=len)   # 高阶函数示例:len 是函数对象,作为了 sort() 函数的参数,是一个高阶函数的例子
    # print(l)  # ['c', 'bb', 'fff', 'aaaa', 'ddddddddd']

    l = [25'1'3'6''4']
    l.sort(key=int)     # 高阶函数示例
    # print(l)
    # 把列表中的元素转换为 int 类型的数值,然后进行比较

    -------------------------------------------------------------------------------------

    # sorted()
    #   这个函数和 sort() 的用法基本一致,但是 sorted() 可以对任意的序列进行排序
    #   并且使用 sorted() 排序不会影响原来的对象,而是返回一个新对象

    l = [25'1'3'6''4']
    # l = "123765816742634781"

    print('排序前:', l)
    print(sorted(l, key=int))   # 高阶函数示例
    print('排序后:', l)

    5.10 函数的闭包

    # 闭包
    #   将函数作为返回值返回,也是一种高阶函数
    #   这种高阶函数我们也称为叫做【闭包】,通过闭包可以创建一些只有当前函数能访问的变量
    #   我们可以将一些私有的数据藏到的闭包中

    def fn() :
        a = 10
        # 在函数内部再定义一个函数
        def inner() :
            print('我是fn2', a)

        # 将内部函数 inner 作为返回值返回   
        return inner

    r = fn()    
    r()
    # r 是一个函数,是调用 fn() 后返回的函数,该函数没有参数
    #   这个函数是在 fn() 内部定义,并不是全局函数
    #   所以这个函数总是能访问到 fn() 函数内的变量,比如:a,而外部不能访问 a。

    注意:
        在全局位置不能访问局部位置的变量。
        如果希望在函数内部(局部位置)来修改全局变量,则需要使用 global 关键字,声明在函数内部使用的局部变量是全局变量。

    -------------------------------------------------------------------------------------

    # 求多个数的平均值
    # nums = [50, 30, 20, 10, 77]

    # sum() 用来求一个列表中所有元素的和
    # print(sum(nums)/len(nums))

    # 形成闭包的必要条件:
    #   ① 有函数嵌套
    #   ② 外部函数将内部函数作为返回值返回
    #   ③ 内部函数必须要使用到外部函数中的变量,这样闭包才有意义!
    def make_averager() :
        # 创建一个列表,用来保存数值
        nums = []

        # 创建一个函数,用来计算平均值
        def averager(n) :
            # 将n添加到列表中
            nums.append(n)
            # 求平均值
            return sum(nums)/len(nums)

        return averager

    averager = make_averager()  # averager 是一个函数,是调用 make_averager() 后返回的函数,该函数有一个参数,即该函数调用时需要传入参数
    print(averager(10))         # 调用 averager 函数:averager(10)
    print(averager(20))
    print(averager(30))
    print(averager(40))

    5.11 装饰器--扩展函数的功能

    # 创建几个函数

    def add(a, b) :
        '''
            求任意两个数的和
        '''

        r = a + b
        return r

    def mul(a, b) :
        '''
            求任意两个数的积
        '''

        r = a * b
        return r    

    # r = add(123, 456)
    # print(r)

    # 希望函数可以在计算前打印开始计算;计算结束后打印计算完毕
    #  我们可以直接通过修改函数中的代码来完成这个需求,但是会产生以下一些问题
    #   ① 如果要修改的函数过多,修改起来会比较麻烦
    #   ② 并且不方便后期的维护
    #   ③ 并且这样做会违反开闭原则(OCP)
    #       程序的设计:要求开放对程序的扩展,要关闭对程序的修改

    # 我们希望在不修改原函数的情况下,来对函数进行扩展:
    def fn() :
        print('我是fn函数......')

    # 只需要根据现有的函数,来创建一个新的函数
    def fn2() :
        print('函数开始执行~~~')
        fn()
        print('函数执行结束~~~')

    fn2()    

    def new_add(a, b) :
        print('计算开始~~~')
        r = add(a, b)
        print('计算结束~~~')
        return r

    r = new_add(111222)    
    print(r)

    -------------------------------------------------------------------------------------

    # 上边的方式,已经可以在不修改源代码的情况下对函数进行扩展了
    #   但是,这种方式要求我们每扩展一个函数就要手动创建一个新的函数,实在是太麻烦了
    #   为了解决这个问题,我们创建一个函数,让这个函数可以自动的帮助我们生产函数

    def begin_end(old) :
        '''
            用来对其他函数进行扩展,使其他函数可以在执行前打印开始执行,执行后打印执行结束
            参数:
                old 要扩展的函数对象
        '''

        # 创建一个新函数
        def new_function(*args, **kwargs) :     # 所有的位置参数都给 args,所有的关键字参数都给 kwargs
            print('开始执行~~~')
            # 调用被扩展的函数
            result = old(*args, **kwargs)   # 把要扩展的函数作为函数的参数传递进来,参数变化就是函数变化
            print('执行结束~~~')
            # 返回函数的执行结果
            return result

        # 返回新函数        
        return new_function

    f1 = begin_end(fn)
    f2 = begin_end(add)
    f3 = begin_end(mul)

    # r = f1()
    # r = f2(123, 456)
    # r = f3(123, 456)
    # print(r)

    # 向 begin_end() 这种函数我们就称它为装饰器(器=函数)
    #   通过装饰器,可以在不修改原来函数的情况下来对函数进行扩展
    #   在开发中,我们都是通过装饰器来扩展函数的功能
    #       1.在定义函数时,可以通过@装饰器,来使用指定的装饰器,来装饰当前的函数
    #       2.可以同时为一个函数指定多个装饰器,这样函数将会按照【从内向外】的顺序被装饰 

    def fn(old) :
        '''
            用来对其他函数进行扩展,使其他函数可以在执行前打印开始执行,执行后打印执行结束
            参数:
                old 要扩展的函数对象
        '''

        # 创建一个新函数
        def new_function(*args, **kwargs) :
            print('fn装饰~开始执行~~~')
            # 调用被扩展的函数
            result = old(*args, **kwargs)
            print('fn装饰~执行结束~~~')
            # 返回函数的执行结果
            return result

        # 返回新函数        
        return new_function

    @fn
    @begin_end
    def say_hello() :
        print('大家好~~~')

    say_hello()

    第六章 对象

    6.1 面向对象

    什么是对象?
        - 对象是内存中专门用来存储数据的一块区域。
        - 对象中可以存放各种数据(比如:数字、布尔值、代码)
        - 对象由三部分组成:
            1.对象的标识(id)
            2.对象的类型(type)
            3.对象的值(value)

    面向对象(oop)
        - Python 是一门面向对象的编程语言
        - 所谓的面向对象的语言:简单理解就是语言中的所有操作都是通过对象来进行的

        - 面向过程的编程语言(员工的思维--执行者)
            - 面向过程指将我们的程序的逻辑分解为一个一个的步骤
                通过对每个步骤的抽象,来完成程序
            - 例子:
                - 孩子上学
                    1.妈妈起床
                    2.妈妈上厕所
                    3.妈妈洗漱
                    4.妈妈做早饭
                    5.妈妈叫孩子起床
                    6.孩子上厕所
                    7.孩子洗漱
                    8.孩子吃饭
                    9.孩子背着书包上学校

            - 面向过程的编程思想将一个功能分解为一个一个小的步骤(细节都在“平面”上,暴露了更多的程序细节)
                我们通过完成一个一个的小的步骤来完成一个程序
            - 这种编程方式,符合我们人类的思维,编写起来相对比较简单
            - 但是这种方式编写代码的往往只适用于一个功能,
                如果要在实现别的功能,即使功能相差极小,也往往要重新编写代码
                所以它可复用性比较低,并且难于维护 

        - 面向对象的编程语言(领导的思维--决策者)
            - 面向对象的编程语言,关注的是对象,而不关注过程 
            - 对于面向对象的语言来说:一切都是对象       
            - 例子:
                1.孩子他妈起床叫孩子上学

            - 面向对象的编程思想,将所有的功能统一保存到对应的对象中(细节都在对象中)
                比如,妈妈功能保存到妈妈的对象中,孩子的功能保存到孩子对象中
                要使用某个功能,直接找到对应的对象调用功能即可
            - 这种方式编写的代码,比较容易阅读,并且比较易于维护,容易复用
            - 但是这种方式编写,不太符合常规的思维,编写起来稍微麻烦一点 

        - 简单归纳一下,面向对象的思想就是:
            0.写对象(准备阶段)
            1.找对象
            2.调对象

    面向过程是一件事“该怎么做”;
    面向对象是一件事“该让谁来做”,然后那个“谁”就是对象,他要怎么做是他自己的事,反正最后一群对象合力能把事做好就行了。

    6.2 类的简介

    类(class) 
        - 我们目前所学习的对象都是 Python 内置的对象
        - 但是内置对象并不能满足所有的需求,所以我们在开发中经常需要自定义一些对象
        - 类,简单理解它就相当于一个图纸。在程序中我们需要根据类来创建对象。
        - 类就是对象的图纸!
        - 我们也称对象是类的实例(instance)
        - 如果多个对象是通过一个类创建的,我们称这些对象是一类对象

        - 像 int() float() bool() str() list() dict() ...... 这些都是类,是 Python 的内置类,使用的是小写字母开头
        - a = int(10)   # 创建一个 int 类的实例 等价于 a = 10

        - 我们自定义的类都需要使用大写字母开头,使用大驼峰命名法(帕斯卡命名法)来对类命名

        - 类也是一个对象!
        - 类就是一个用来创建对象的对象!
        - 类是 type 类型的对象,定义类实际上就是定义了一个 type 类型的对象。

    类的简介--示例代码:

    a = int(10)         # 创建一个 int 类的实例
    b = str('hello')    # 创建一个 str 类的实例

    # print(a, type(a))
    # print(b, type(b))

    # 定义一个简单的类
    # 使用 class 关键字来定义类,语法和函数很像!
    # class 类名([父类]) :
    #   代码块

    # 定义一个自定义的类,括号可写可不写!!!
    class MyClass() :
        pass

    print(MyClass)    # <class '__main__.MyClass'>

    # 使用 MyClass 创建一个对象
    # 使用类来创建对象,就像调用一个函数一样
    mc_1 = MyClass()  # mc_1 就是通过 MyClass 创建的对象,mc_1 是 MyClass 的实例
    mc_2 = MyClass()
    mc_3 = MyClass()
    mc_4 = MyClass()
    # mc_1 mc_2 mc_3 mc_4 都是 MyClass 的实例,他们都是一类对象

    # isinstance() 用来检查一个对象是否是一个类的实例
    result = isinstance(mc_2, MyClass)
    result = isinstance(mc_2, str)

    # print(mc_1, type(mc_1))   # <__main__.MyClass object at 0x000001740ADB0278> <class '__main__.MyClass'>
    # print('result =', result)
    # print(id(MyClass), type(MyClass))     # 1597876961928 <class 'type'>

    # 现在我们通过 MyClass 这个类创建的对象都是一个空对象
    # 也就是对象中实际上什么都没有,就相当于是一个空的盒子
    # 可以向对象中添加变量,对象中的变量称为属性
    # 语法:对象.属性名 = 属性值
    mc_1.name = '孙悟空'
    mc_2.name = '猪八戒'

    print(mc_2.name)

    自定义的类的内存图解:

    6.3 类的定义+类的属性和方法

    类的定义
        - 类和对象都是对现实生活中的事物或程序中的内容的抽象
        - 实际上所有的事物都由两部分构成:
            1.数据(属性)
            2.行为(方法)

        - 在类的代码块中,我们可以定义变量和函数(方法):
            变量会成为该类实例的公共属性,所有的该类实例都可以通过 对象.属性名 的形式访问
            函数会成为该类实例的公共方法,所有的该类实例都可以通过 对象.方法名() 的形式调用方法

        - 注意:
            对象中的方法调用时,第一个参数由解析器自动传递,所以在定义方法时,至少要定义一个形参!!!

        - 实例为什么能访问到类中的属性和方法?
            类中定义的属性和方法都是公共的,任何该类实例都可以访问。

            - 属性和方法查找的流程:
                当我们调用一个对象的属性时,解析器会先在当前对象中寻找是否含有该属性:
                    如果有,则直接返回当前对象的属性值;
                    如果没有,则去当前对象的类对象中去寻找,如果有,则返回类对象的属性值;
                    如果类对象中依然没有,则报错!
                调用一个对象的方法的流程同理!

            - 类对象和实例对象中都可以保存属性(方法):
                - 如果这个属性(方法)是所有的实例共享的,则应该将其保存到类对象中(共性的东西)
                - 如果这个属性(方法)是某个实例独有的,则应该保存到实例对象中(特性的东西)

            - 一般情况下:属性保存到实例对象中,而方法需要保存到类对象中。

    类的定义--示例代码:

    # 尝试定义一个表示人的类
    class Person :
        # 在类的代码块中,我们可以定义变量和函数
        # 在类中我们所定义的变量,将会成为所有的实例的公共属性
        # 所有实例都可以访问这些变量
        name = 'swk'    # 公共属性,所有实例都可以访问

        # 在类中也可以定义函数,类中的定义的函数,我们称为【方法】
        # 这些方法可以通过该类的所有实例来访问

        def say_hello(self) :
            # 方法每次被调用时,解析器都会自动传递第一个实参
            #   第一个参数:就是调用该方法的对象本身:
            #       如果是 p1 调的,则第一个参数就是 p1 对象
            #       如果是 p2 调的,则第一个参数就是 p2 对象
            #   一般我们都会将这个参数命名为 self

            # 对于 say_hello() 这个方法,假如让其显示如下格式的数据:
            #   你好!我是 xxx
            # 注意:在类中的方法中我们不能直接访问类中的属性,那么该如何办呢?
            print('你好!我是 %s' %self.name)

    # 创建 Person 的实例
    p1 = Person()
    p2 = Person()

    # print(p2.name)
    # 调用方法:对象.方法名()
    #   方法调用和函数调用的区别:
    #       1.如果是函数调用,则调用时传几个参数,就会有几个实参
    #       2.如果是方法调用,则默认传递一个参数,所以方法中至少要定义一个形参

    # 修改 p1 的 name 属性
    p1.name = '猪八戒'
    p2.name = '沙和尚'

    p1.say_hello()  # '你好!我是 猪八戒'
    p2.say_hello()  # '你好!我是 沙和尚'

    # del p2.name   # 删除 p2 的 name 属性

    # print(p1.name) 
    # print(p2.name) 

    类的定义+类的属性和方法的图解:

    6.4 类的特殊方法

    class Person :
        # 在类中可以定义一些特殊方法(或者魔术方法)
        #   特殊方法都是以__开头,__结尾的方法
        #   特殊方法不需要我们自己调用,不要尝试去调用特殊方法
        #   特殊方法将会在特殊的时刻自动调用

        # 学习特殊方法:
        #   1.特殊方法什么时候调用
        #   2.特殊方法有什么作用

        # 创建对象的流程:即 p1 = Person() 的运行流程:
        #   1.创建一个变量
        #   2.在内存中创建一个新对象
        #   3.__init__(self) 方法执行
        #   4.将对象的 id 赋值给变量

        #   init 会在对象创建以后立刻执行
        #   init 可以用来向新创建的对象中初始化属性
        #   调用类创建对象的实例时,类后边的所有参数都会依次传递到 init() 中
        def __init__(self, name) :
            # print(self)
            # 通过 self 向新建的对象中初始化属性
            self.name = name

        def say_hello(self) :
            print('大家好,我是 %s' %self.name)

    #   目前来讲,对于 Person 类来说 name 是必须的,并且每一个对象中的 name 属性的值基本上都是不同
    #   而我们现在是将 name 属性在定义完对象以后,手动添加到对象中,这种方式很容易出现错误
    #   我们希望,在创建对象时,必须设置 name 属性,如果不设置则对象将无法创建
    #   并且属性的创建应该是自动完成的,而不是在创建对象以后手动添加完成

    # p1 = Person()
    # 手动向对象添加 name 属性
    # p1.name = '孙悟空'

    # p2 = Person()
    # 手动向对象添加 name 属性
    # p2.name = '猪八戒'

    # p3 = Person()
    # 手动向对象添加 name 属性
    # p3.name = '沙和尚'

    # p3.say_hello()

    p1 = Person('孙悟空')
    p2 = Person('猪八戒')
    p3 = Person('沙和尚')
    p4 = Person('唐僧')
    # p1.__init__()     # 特殊方法不需要我们自己调用,不要尝试去调用特殊方法

    # print(p1.name)
    # print(p2.name)
    # print(p3.name)
    # print(p4.name)

    p4.say_hello()

    练习--示例代码:

    创建对象的流程
        p1 = Person() 的运行流程
            1.创建一个变量
            2.在内存中创建一个新对象
            3.__init__(self) 方法执行
            4.将对象的 id 赋值给变量

    类的基本结构:
        class 类名([父类]) :
            公共的属性... 

            # 对象的初始化方法
            def __init__(self, ...) :
                ...

            # 其他的方法    
            def method_1(self, ...) :
                ...

            def method_2(self, ...) :
                ...

            ...    

    练习:
    尝试自定义一个表示狗的类(Dog)
      属性:
        name
        age
        gender
        height
        …
      方法:
        jiao()
        yao()
        run()
        …

    class Dog():
        '''
            表示狗的类
        '''

        def __init__(self, name, age, gender, height):
            self.name = name
            self.age = age
            self.gender = gender
            self.height = height

        def jiao(self):
            '''
                狗叫的方法
            '''

            print('汪汪汪~~~')

        def yao(self):
            '''
                狗咬的方法
            '''

            print('咬你~~~')

        def run(self):
            '''
                狗跑的方法
            '''

            print('%s 快乐的奔跑~~~' %self.name)

    d = Dog('旺财'10'mele'30)
    print(d.name, d.age, d.gender, d.height)

    d.jiao()
    d.yao()
    d.run()

    # 目前我们可以直接通过 对象.属性 的方式来修改属性的值,这种方式导致对象中的属性可以随意修改
    #   非常的不安全,属性的值可以任意修改,不论对错
    # 现在我们就需要一种方式来增强数据的安全性:
    #   1.属性不能随意修改(我让你改你才能改,不让你改你就不能改)
    #   2.属性不能修改为任意的值(年龄不能是负数)
    d.name = '阿黄'
    d.age = -10

    6.5 封装

    # 封装是面向对象的三大特性之一
    #   封装指的是隐藏对象中一些不希望被外部所访问到的属性或方法

    # 如何隐藏一个对象中的属性?
    #   - 将对象的属性名,修改为一个外部不知道的名字,例如 将 name 修改为 hidden_name
    # 如何获取(修改)对象中的属性?
    #   - 需要提供一个 getter 和 setter 方法使外部可以访问到属性
    #   - getter 获取对象中的指定属性(get_属性名),没有参数且有返回值
    #   - setter 用来设置对象的指定属性(set_属性名),有一个参数且没有返回值

    # 使用封装,确实增加了类的定义的复杂程度,但是它也确保了数据的安全性:
    #   1.隐藏了属性名,使调用者无法随意的修改对象中的属性
    #   2.增加了 getter 和 setter 方法,很好的控制了属性是否是只读的
    #       如果希望属性是只读的,则可以直接去掉 setter 方法
    #       如果希望属性不能被外部访问,则可以直接去掉 getter 方法
    #   3.使用 setter 方法设置属性,可以增加数据的验证,确保数据的值是正确的
    #   4.使用 getter 方法获取属性,使用 setter 方法设置属性
    #       可以在读取属性和修改属性的同时做一些其他的处理
    #   5.使用 getter 方法可以表示一些计算的属性

    class Dog:
        '''
            表示狗的类
        '''

        def __init__(self, name, age):
            self.hidden_name = name
            self.hidden_age = age

        def say_hello(self):
            print('大家好,我是 %s' %self.hidden_name)

        def get_name(self):
            '''
                get_name() 用来获取对象的 name 属性
            '''

            # print('用户读取了属性')
            return self.hidden_name

        def set_name(self, name):
            # print('用户修改了属性')
            self.hidden_name = name

        def get_age(self):
            return self.hidden_age

        def set_age(self, age):
            if age > 0 :
                self.hidden_age = age

    d = Dog('旺财'8)

    # d.say_hello()

    print(d.get_name())
    # 调用 setter 来修改 name 属性 
    d.set_name('小黑')
    d.set_age(-10)

    # d.say_hello()
    print(d.get_age())

    6.5.1 隐藏类中的属性

    class Rectangle:
        '''
            表示矩形的类
        '''

        def __init__(self, width, height):
            self.hidden_width = width
            self.hidden_height = height

        def get_width(self):
            return self.hidden_width

        def get_height(self):
            return self.hidden_height   

        def set_width(self, width):
            self.hidden_width = width 

        def set_height(self, height):
            self.hidden_height = height 

        def get_area(self):
            return self.hidden_width * self.hidden_height        

    # r = Rectangle(5, 2)  
    # r.set_width(10)
    # r.set_height(20)
    # print(r.get_area())

    -------------------------------------------------------------------------------------

    # 可以为对象的属性使用双下划线开头,__xxx
    #   双下划线开头的属性,是对象的隐藏属性,隐藏属性只能在类的内部访问,无法通过对象访问
    #   其实隐藏属性只不过是 Python 自动为属性改了一个名字
    #   实际上是将名字修改为了,_类名__属性名 比如 __name -> _Person__name
    # class Person:
    #     def __init__(self, name):
    #         self.__name = name

    #     def get_name(self):
    #         return self.__name

    #     def set_name(self, name):
    #         self.__name = name        

    # p = Person('孙悟空')

    # print(p.__name)       # __开头的属性是隐藏属性,无法通过对象访问
    # p.__name = '猪八戒'   # __开头的属性是隐藏属性,无法通过对象修改
    # print(p._Person__name)        # 可以访问
    # p._Person__name = '猪八戒'    # 可以修改
    # print(p.get_name())

    -------------------------------------------------------------------------------------

    # 使用__开头的属性,实际上依然可以在外部访问,所以这种方式我们一般不用
    # 推荐方式:
    #   一般我们会将一些私有属性(不希望被外部访问的属性)以_开头
    #   一般情况下,使用_开头的属性都是私有属性,没有特殊需要不要修改私有属性(尽管可以修改)
    class Person:
        def __init__(self, name):
            self._name = name

        def get_name(self):
            return self._name

        def set_name(self, name):
            self._name = name   

    p = Person('孙悟空')
    p._name = '猪八戒'
    print(p._name)

    6.5.2 property 装饰器

    class Person:
        def __init__(self, name, age):
            self._name = name
            self._age = age

        # property 装饰器,用来将一个 get 方法,转换为对象的属性
        # 添加为 property 装饰器以后,我们就可以像调用属性一样使用 get 方法
        # 使用 property 装饰的方法的方法名必须和属性名是一样的

        @property    
        def name(self):
            print('get方法执行了~~~')
            return self._name

        # setter 方法的装饰器:@属性名.setter
        @name.setter    
        def name(self, name):
            print('setter方法调用了')
            self._name = name        

        @property
        def age(self):
            return self._age

        # setter 方法的装饰器:@属性名.setter
        @age.setter    
        def age(self, age):
            self._age = age   

    p = Person('猪八戒'18)

    p.name = '孙悟空'
    p.age = 28

    print(p.name, p.age)

    6.6 继承

    6.6.1 继承的简介

    # 继承

    # 定义一个类 Animal(动物)
    #   这个类中需要两个方法:run() sleep() 
    class Animal:
        def run(self):
            print('动物会跑~~~')

        def sleep(self):
            print('动物睡觉~~~')

        # def bark(self):
        #     print('动物嚎叫~~~')   

    # 定义一个类 Dog(狗)
    #   这个类中需要三个方法:run() sleep() bark()
    # class Dog:
    #     def run(self):
    #         print('狗会跑~~~')

    #     def sleep(self):
    #         print('狗睡觉~~~')

    #     def bark(self):
    #         print('汪汪汪~~~') 

    # 有一个类,能够实现我们需要的大部分功能,但是不能实现全部功能
    # 如何能让这个类来实现全部的功能呢?
    #   ① 直接修改这个类,在这个类中添加我们需要的功能
    #       - 修改起来会比较麻烦,并且会违反 OCP 原则(开闭原则)
    #   ② 直接创建一个新的类
    #       - 创建一个新的类比较麻烦,并且需要大量的进行复制粘贴,会出现大量的重复性代码
    #   ③ 直接从 Animal 类中来继承它的属性和方法
    #       - 继承是面向对象三大特性之一
    #       - 通过继承我们可以使一个类获取到其他类中的属性和方法
    #       - 在定义类时,可以在类名后的括号中指定当前类的父类(超类、基类、super)
    #         子类(衍生类)可以直接继承父类中的所有的属性和方法
    #           
    #  通过继承可以直接让子类获取到父类的方法或属性,避免编写重复性的代码,并且也符合 OCP 原则
    #  所以我们经常需要通过继承来对一个类进行扩展

    class Dog(Animal):
        # 子类特有的方法
        def bark(self):
            print('汪汪汪~~~'

        # 重写父类的方法
        def run(self):
            print('狗跑~~~')

        # 其余的方法继承父类的

    class Hashiqi(Dog):
        def fan_sha(self):
            print('我是一只傻傻的哈士奇')        

    d = Dog()
    h = Hashiqi()

    # d.run()
    # d.sleep()
    # d.bark()

    # r = isinstance(d, Dog)
    # r = isinstance(d, Animal)
    # print(r)

    -------------------------------------------------------------------------------------

    # 在创建类时,如果省略了父类,则默认父类为 object
    # object 是所有类的父类,所有类都继承自 object
    class Person(object):
        pass

    # issubclass()      检查一个类是否是另一个类的子类
    # print(issubclass(Animal, Dog))    # True
    # print(issubclass(Animal, object)) # True
    # print(issubclass(Person, object)) # True

    # isinstance()      用来检查一个对象是否是一个类的实例
    #   如果这个类是这个对象的父类,也会返回 True
    #   所有的对象都是 object 的实例
    print(isinstance(print, object))    # True

    6.6.2 方法的重写

    # 定义一个类 Animal(动物)
    #   这个类中需要两个方法:run() sleep() 
    class Animal:
        def run(self):
            print('动物会跑~~~')

        def sleep(self):
            print('动物睡觉~~~')

    class Dog(Animal):
        def bark(self):
            print('汪汪汪~~~'

        def run(self):
            print('狗跑~~~~')    

    # 如果在子类中有和父类同名的方法,则通过子类实例去调用方法时:
    #   会调用子类的方法而不是父类的方法,这个特点我们成为叫做方法的重写(覆写,覆盖,override)
    # 创建 Dog 类的实例
    # d = Dog()
    # d.run()

    # 当我们调用一个对象的方法时:(就近原则)
    #   会优先去当前对象中寻找是否具有该方法,如果有则直接调用;
    #   如果没有,则去当前对象的父类中寻找,如果父类中有则直接调用父类中的方法;
    #   如果没有,则去父类的父类中寻找,以此类推,直到找到 object,如果依然没有找到,则报错。
    class A(object):
        def test(self):
            print('AAA')

    class B(A):
        def test(self):
            print('BBB')

    class C(B):
        def test(self):
            print('CCC')   

    # 创建一个 c 的实例
    c = C()
    c.test()

    6.6.3 super()

    class Animal:
        def __init__(self, name):
            self._name = name

        def run(self):
            print('动物会跑~~~')

        def sleep(self):
            print('动物睡觉~~~')

        @property
        def name(self):
            return self._name

        @name.setter    
        def name(self ,name):
            self._name = name

    # 父类中的所有方法都会被子类继承,包括特殊方法,也可以重写特殊方法
    class Dog(Animal):
        def __init__(self, name, age):
            # 希望可以直接调用父类的 __init__ 来初始化父类中定义的属性
            # Animal.__init__(self, name)   # 这种方式不是动态获取父类的,耦合性太强
            # super() 可以用来获取当前类的父类,并且通过 super() 返回对象调用父类方法时,不需要传递 self
            super().__init__(name)
            self._age = age

        def bark(self):
            print('汪汪汪~~~')

        def run(self):
            print('狗跑~~~~')

        @property
        def age(self):
            return self._age

        @age.setter
        def age(self,age):
            self._age = name

    d = Dog('旺财'18)
    print(d.name)
    print(d.age)

    6.6.4 多重继承

    class A(object):
        def test(self):
            print('AAA')

    class B(object):
        def test(self):
            print('B中的test()方法~~')

        def test2(self):
            print('BBB'

    # 在 Python 中是支持多重继承的,也就是我们可以为一个类同时指定多个父类(Java 只支持单继承)
    #   可以在类名的()后边添加多个类,来实现多重继承
    #   多重继承,会使子类同时拥有多个父类,并且会获取到所有父类中的方法

    # 在开发中没有特殊的情况,应该尽量避免使用多重继承,因为【多重继承会让我们的代码过于复杂】
    # 如果多个父类中有同名的方法,则会现在第一个父类中寻找(包括第一个父类的父类),然后找第二个(包括第二个父类的父类),然后找第三个(包括第三个父类的父类),...,找过的父类不会再找,以此类推
    # 会出现前边父类的方法会覆盖后边父类的方法

    class C(A, B):
        pass

    # 类名.__bases__ 这个属性可以用来获取当前类的所有父类    
    # print(C.__bases__) # (<class '__main__.B'>,)
    # print(B.__bases__) # (<class 'object'>,)

    # print(C.__bases__) # (<class '__main__.A'>, <class '__main__.B'>)

    c = C()
    c.test()

    多重继承小图解:

    6.7 多态

    # 多态是面向对象的三大特征之一
    #   多态从字面上理解是多种形态
    #   狗(狼狗、藏獒、哈士奇、古牧 、...)
    #   一个对象可以以不同的形态去呈现

    # 定义两个类
    class A:
        def __init__(self, name):
            self._name = name

        @property
        def name(self):
            return self._name

        @name.setter
        def name(self, name):
            self._name = name   

    class B:
        def __init__(self, name):
            self._name = name

        def __len__(self):
            return 10

        @property
        def name(self):
            return self._name

        @name.setter
        def name(self, name):
            self._name = name   

    class C:
        pass

    a = A('孙悟空')
    b = B('猪八戒')
    c = C()

    # 定义一个函数
    #   对于 say_hello() 这个函数来说,只要对象中含有 name 属性,它就可以作为参数传递
    #   这个函数并不会考虑对象的类型,只要有 name 属性即可,即多态函数:可以适用多种对象的类型
    def say_hello(obj):
        print('你好 %s' %obj.name)

    say_hello(a)
    say_hello(b)
    # say_hello(c)  # 报错,因为 c 对象中没有 name 属性

    -------------------------------------------------------------------------------------

    # 在 say_hello_2 中我们做了一个类型检查,也就是只有 obj 是 A 类型的对象时,才可以正常使用,
    #   其他类型的对象都无法使用该函数,这个函数就违反了多态
    # 违反了多态的函数,只适用于一种类型的对象,无法处理其他类型对象,这样导致函数的适应性非常的差!
    # 注意:向 isinstance() 这种函数,在开发中一般是不会使用的!!!
    def say_hello_2(obj):
        # 做类型检查
        if isinstance(obj, A):
            print('你好 %s' %obj.name)

    say_hello_2(a)
    # say_hello_2(b)

    -------------------------------------------------------------------------------------

    # 多态名言:鸭子类型
    #   如果一个东西,走路像鸭子,叫声像鸭子,那么它就是鸭子

    # len()
    #   之所以一个对象能通过 len() 来获取长度,是因为对象中具有一个特殊方法 __len__
    #   换句话说,只要对象中具有 __len__ 特殊方法,就可以通过 len() 来获取它的长度
    l = [123]
    s = 'hello'

    # print(len(l))
    # print(len(s))
    print(len(b))   # 可以调用
    print(len(c))   # 报错

    -------------------------------------------------------------------------------------

    # 面向对象的三大特征:
    #   封装
    #       - 确保对象中的数据安全
    #   继承
    #       - 保证了对象的可扩展性
    #   多态
    #       - 保证了程序的灵活性

    6.8 类中的属性和方法

    # 定义一个类
    class A(object):

        # 类属性
        # 实例属性
        # 类方法
        # 实例方法
        # 静态方法

        # 类属性:直接在类中定义的属性是类属性
        #   类属性可以通过类对象或类的实例对象访问到,比如:A.count 或者 A().count
        #   但是类属性只能通过类对象来修改,无法通过实例对象修改
        count = 0

        def __init__(self):
            # 实例属性:通过实例对象添加的属性属于实例属性
            #   实例属性只能通过实例对象来访问和修改,类对象无法访问修改
            self.name = '孙悟空'

        # 实例方法:在类中定义的,且以 self 为第一个参数的方法都是实例方法
        #   实例方法在调用时,Python 会将调用的实例对象作为 self 传入
        #   实例方法可以通过实例对象和类对象去调用
        #       当通过实例对象调用时,会自动将当前调用对象作为 self 传入
        #       当通过类对象调用时,不会自动传递 self,此时我们必须手动传递 self ,即手动传递实例对象!
        def test(self):
            print('这是test方法,它是一个实例方法~~~', self)    

        # 类方法:在类内部使用 @classmethod 来修饰的方法属于类方法
        #   类方法的第一个参数是 cls,也会被自动传递,cls 就是当前的类对象
        #       类方法和实例方法的区别:实例方法的第一个参数是 self,而类方法的第一个参数是 cls
        #       类方法可以通过类对象去调用,也可以通过实例对象去调用,二中方式没有区别!
        @classmethod
        def test_2(cls):
            print('这是test_2方法,它是一个类方法~~~ ', cls)
            print(cls.count)

        # 静态方法:在类中使用 @staticmethod 来修饰的方法属于静态方法
        #   静态方法不需要指定任何的默认参数,静态方法可以通过类对象和实例对象去调用
        #   静态方法:基本上是一个和当前类无关的方法,它只是一个保存到当前类中的函数,说白了就是保存了一个内存地址!!!
        #   静态方法一般都是一些工具方法,和当前类无关
        @staticmethod
        def test_3():
            print('test_3执行了~~~')

    a = A()
    # 实例属性:通过实例对象添加的属性属于实例属性
    # a.count = 10
    # A.count = 100
    # print('A ,', A.count) 
    # print('a ,', a.count) 
    # print('A ,', A.name) 
    # print('a ,', a.name)   

    # a.test()      # 等价于 A.test(a)
    # A.test_2()    # 等价于 a.test_2()

    A.test_3()
    a.test_3()

    6.9 垃圾回收

    # 就像我们生活中会产生垃圾一样,程序在运行过程当中也会产生垃圾
    # 程序运行过程中产生的垃圾会影响到程序的运行的运行性能,所以这些垃圾必须被及时清理
    # 没用的东西就是垃圾

    # 在程序中没有被引用的对象就是垃圾,这种垃圾对象过多以后会影响到程序的运行的性能,注意:垃圾对象:没有被引用的对象,与该对象是否引用了其他对象无关!
    #   所以我们必须进行及时的垃圾回收,所谓的垃圾回收就是讲垃圾对象从内存中删除。
    # 在 Python 中有自动的垃圾回收机制,它会自动将这些没有被引用的对象删除,所以我们不用手动处理垃圾回收。

    class A:
        def __init__(self):
            self.name = 'A类'

        # __del__ 是一个特殊方法,它会在对象被垃圾回收前调用
        def __del__(self):
            print('A()对象被删除了~~~', self)

    a = A()
    b = a   # 又使用一个变量 b,来引用 a 对应的对象

    print(a.name)

    # a = None  # 将 a 设置为了 None,此时没有任何的变量对 A() 对象进行引用,它就是变成了垃圾
    # b = None
    # 或者
    # del a
    # del b
    input('按回车键退出...')

    6.10 特殊方法(魔术方法)

    # 特殊方法,也称为魔术方法
    #   特殊方法都是使用__开头和结尾的
    #   特殊方法一般不需要我们手动调用,需要在一些特殊情况下自动执行

    # 定义一个 Person 类
    class Person(object):
        """人类"""
        def __init__(self, name, age):
            self.name = name
            self.age = age

        # __str__() 这个特殊方法会在尝试将当前对象转换为字符串的时候调用
        #   它的作用可以用来指定对象转换为字符串的结果(print 函数)  
        def __str__(self):
            return 'Person [name=%s, age=%d]' %(self.name, self.age)        

        # __repr__() 这个特殊方法会在对当前对象使用 repr() 函数时调用
        #   它的作用是指定对象在 ‘交互模式’ 中直接输出的结果   
        def __repr__(self):
            return 'Hello'        

        # object.__add__(self, other)
        # object.__sub__(self, other)
        # object.__mul__(self, other)
        # object.__matmul__(self, other)
        # object.__truediv__(self, other)
        # object.__floordiv__(self, other)
        # object.__mod__(self, other)
        # object.__divmod__(self, other)
        # object.__pow__(self, other[, modulo])
        # object.__lshift__(self, other)
        # object.__rshift__(self, other)
        # object.__and__(self, other)
        # object.__xor__(self, other)
        # object.__or__(self, other)

        # object.__lt__(self, other)    小于 <
        # object.__le__(self, other)    小于等于 <=
        # object.__eq__(self, other)    等于 ==
        # object.__ne__(self, other)    不等于 !=
        # object.__gt__(self, other)    大于 >
        # object.__ge__(self, other)    大于等于 >= 

        # __len__() 获取对象的长度

        # object.__bool__(self)
        #   可以通过 bool 来指定对象转换为布尔值的情况
        def __bool__(self):
            return self.age > 17

        # __gt__ 会在对象做大于比较的时候调用,该方法的返回值将会作为比较的结果
        #   它需要两个参数,一个 self 表示当前对象,other 表示和当前对象比较的对象
        # self > other
        def __gt__(self, other):
            return self.age > other.age

    # 创建两个 Person 类的实例        
    p1 = Person('孙悟空'18)
    p2 = Person('猪八戒'28)

    # 打印 p1
    # 当我们打印一个对象时,实际上打印的是对象的中特殊方法 __str__() 的返回值
    # print(p1)     # <__main__.Person object at 0x04E95090>

    # print(p1)         # Person [name=孙悟空, age=18]
    # print(p2)         # Person [name=猪八戒, age=28]
    # print(str(p1))    # Person [name=孙悟空, age=18]
    # print(str(p2))    # Person [name=猪八戒, age=28]
    # print(p2) 等价于 print(str(p2))

    # print(repr(p1))

    # t = 1, 2, 3
    # print(t)      # (1, 2, 3)

    # print(p1 > p2)
    # print(p2 > p1)

    # print(bool(p1))

    # if p1 :
    #     print(p1.name, '已经成年了')
    # else :
    #     print(p1.name, '还未成年了')

    str__() 和 __repr() 魔术方法交互界面输出:

    6.11 模块化

    6.11.1 模块的创建

    # 模块(module)
    #   模块化:模块化指将一个完整的程序分解为一个一个小的模块
    #   通过将模块组合,来搭建出一个完整的程序
    # 不采用模块化,统一将所有的代码编写到一个文件中
    # 采用模块化,将程序分别编写到多个文件中
    #   模块化的优点:
    #       ① 方便开发
    #       ② 方便维护
    #       ③ 模块可以复用

    # 在 Python 中一个 py 文件就是一个模块,要想创建模块,实际上就是创建一个 python 文件
    # 注意:模块名要符号标识符的规范!!!

    # 在一个模块中引入外部模块:
    #   ① import 模块名(模块名,就是 python 文件的名字,注意不要 .py)
    #   ② import 模块名 as 模块别名
    #       - 可以引入同一个模块多次,但是模块的实例只会创建一个
    #       - import 可以在程序的任意位置调用,但是一般情况下,import 语句都会统一写在程序的开头
    #       - 在每一个模块内部都有一个 __name__ 属性,通过这个属性可以获取到模块的名字
    #       - __name__ 属性值为 __main__ 的模块是主模块,一个程序中只会有一个主模块
    #           主模块就是我们直接通过 python 执行的模块
    import test_module as test

    print(test_module)      # <module 'test_module' from 'C:\Users\bruce\Desktop\py_learn\lesson_06_对象\code\test_module.py'>
    print(test.__name__)    # test_module
    print(__name__)         # __main__  主模块就是我们直接通过 python 执行的模块

    6.11.2 模块的使用

    # 可以引入这整个模块中的内容
    #   import 模块名(模块名,就是 python 文件的名字,注意不要 .py)
    #   import 模块名 as 模块别名

    # import m

    # 访问模块中的变量:模块名.变量名
    # print(m.a, m.b)

    # 访问模块中的函数:模块名.函数名()
    # m.test()
    # m.test2()

    # 访问模块中的类:模块名.类名()
    # p = m.Person()
    # print(p.name)

    -------------------------------------------------------------------------------------

    # 也可以只引入模块中的部分内容
    #   语法:from 模块名 import 变量,变量....
    # from m import Person
    # from m import test
    # from m import Person,test
    # from m import *   # 引入模块中所有内容,一般不会这样使用!!!原因1:导致模块过大,原因2:模块中的内容会覆盖主模块中的内容

    def test2():
        print('这是主模块中的test2')

    # p1 = Person()
    # print(p1)
    # test()
    # test2()

    -------------------------------------------------------------------------------------

    # 也可以为引入的变量使用别名
    #   语法:from 模块名 import 变量 as 别名
    # from m import test2 as new_test2

    # test2()
    # new_test2()

    from m import *
    # print(_c) # 不能访问到

    # import xxx
    # import xxx as yyy
    # from xxx import yyy,zzz,fff
    # from xxx import *
    # from xxx import yyy as zz

    模块示例代码 m.py :

    # 可以在模块中定义变量,在模块中定义的变量,在引入模块后,就可以直接使用了
    a = 10
    b = 20

    # 添加了_的变量,只能在模块内部访问,在通过 import * 引入时,不会引入_开头的变量
    _c = 30

    # 可以在模块中定义函数,同样可以通过模块访问到
    def test():
        print('test')

    def test2():
        print('test2')

    # 也可以在模块中定义类,同样可以通过模块访问到 
    class Person:
        def __init__(self):
            self.name = '孙悟空'

    # 编写测试代码,这部分代码,只要在当前文件作为主模块的时候才需要执行,而当模块被其他模块引入时,则不需要执行,即此时我们就必须要检查当前模块是否是主模块  
    if __name__ == '__main__':
        test()
        test2()
        p = Person()
        print(p.name)

    6.11.3 包

    # 包 Package
    #   包也是一个模块
    #   当我们模块中代码过多时,或者一个模块需要被分解为多个模块时,这时就需要使用到包
    #   普通的模块就是一个 py 文件,而包是一个文件夹
    #   包中必须要有一个 __init__.py 这个文件,这个文件中可以包含有包中的主要内容
    from hello import a,b

    print(a.a)
    print(b.b)

    # __pycache__ 是模块的缓存文件
    #   py 代码在执行前,需要被解析器先转换为机器码,然后再执行
    #   所以我们在使用模块(包)时,也需要将模块(包)的代码先转换为机器码然后再交由计算机执行
    #   而为了提高程序运行的性能,python 会在编译过一次以后,将代码保存到一个缓存文件中
    #   这样在下次加载这个模块(包)时,就可以不再重新编译而是直接加载缓存中编译好的代码即可

    6.11.4 Python 标准库

    # 开箱即用
    #   为了实现开箱即用的思想,Python 中为我们提供了一个模块的标准库
    #   在这个标准库中,有很多很强大的模块我们可以直接使用
    #   并且标准库会随 Python 的安装一同安装

    # 比如:sys 模块,pprint 模块

    # 引入 sys 模块,它里面提供了一些变量和函数,使我们可以获取到 Python 解析器的信息,或者通过函数来操作 Python 解析器
    import sys

    # 引入 pprint 模块,它给我们提供了一个方法 pprint() 该方法可以用来对打印的数据做简单的格式化
    import pprint

    # sys.argv
    #   获取执行代码时的命令行中所包含的参数
    #   该属性返回的是一个列表,列表中保存了当前命令的所有参数
    # print(sys.argv)

    # sys.modules
    #   获取当前程序中引入的所有模块
    #   modules 是一个字典,字典的 key 是模块名字,字典的 value 是模块对象
    # pprint.pprint(sys.modules)

    # sys.path
    #   它是一个列表,列表中保存的是模块的搜索路径
    ['C:\Users\bruce\Desktop\py_learn\lesson_06_对象\code',
     'D:\learn\Python\Python37\Python37\python37.zip',
     'D:\learn\Python\Python37\Python37\DLLs',
     'D:\learn\Python\Python37\Python37\lib',
     'D:\learn\Python\Python37\Python37',
     'D:\learn\Python\Python37\Python37\lib\site-packages']
    # pprint.pprint(sys.path)

    # sys.platform
    #   表示当前 Python 运行的平台
    # print(sys.platform)   # win32

    System    platform value
    Linux    'linux'
    Windows    'win32'
    Windows/Cygwin    'cygwin'
    Mac OS X    'darwin'

    # sys.exit()
    #   用来退出程序
    # sys.exit('程序出现异常,结束!')
    # print('hello')

    # os 模块让我们可以对操作系统进行访问
    import os

    # os.environ
    #   通过这个属性可以获取到当前系统的环境变量
    # pprint.pprint(os.environ['path'])
    ('D:\learn\Java\jdk\jdk1.8.0_192\bin;D:\learn\Java\jdk\jdk1.8.0_192\jre\bin;D:\learn\Scala\scala-2.11.8\bin;D:\learn\Maven\apache-maven-3.3.9\bin;D:\work\Hadoop\hadoop-2.7.2\bin;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Windows\System32\OpenSSH\;D:\work\Git\Git\cmd;D:\work\MySQL\MySQL '
     'Server '
     '5.5\bin;D:\work\MongoDB\Server\3.2\bin;D:\learn\Python\Python37\Python37\Scripts\;D:\learn\Python\Python37\Python37\;C:\Users\bruce\AppData\Local\Microsoft\WindowsApps;')

    # os.system()
    #   可以用来执行当前操作系统的命令
    # os.system('dir')
    os.system('notepad')
  • 相关阅读:
    算法——排序方法总结(冒泡,快速,直接,希尔,堆,归并排序)
    C++函数调用之——值传递、指针传递、引用传递
    STM32(13)——SPI
    STM32(12)——CAN
    STM32(11)——DMA
    STM32(10)——窗口看门狗
    STM32(9)——通用定时器作为输入捕捉
    SRM32(8)——ADC和DAC
    WPF从入门到放弃系列第二章 XAML
    WPF从入门到放弃系列第一章 初识WPF
  • 原文地址:https://www.cnblogs.com/chenmingjun/p/10863742.html
Copyright © 2011-2022 走看看