zoukankan      html  css  js  c++  java
  • 朴素贝叶斯

    这篇博客讲解的不错[https://blog.csdn.net/guoyunfei20/article/details/78911721]

    引自[https://blog.csdn.net/qiu_zhi_liao/article/details/90671932]

    朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。朴素贝叶斯原理简单,也很容易实现,多用于文本分类,比如垃圾邮件过滤。

    之所以称为朴素贝叶斯,是因为它假设每个输入变量是独立的

    为了训练朴素贝叶斯模型,我们需要先给出训练数据,以及这些数据对应的分类。那么上面这两个概率,也就是类别概率和条件概率。他们都可以从给出的训练数据中计算出来。一旦计算出来,概率模型就可以使用贝叶斯原理对新数据进行预测。

    用处

    朴素贝叶斯分类常用于文本分类,尤其是对于英文等语言来说,分类效果很好。它常用于垃圾文本过滤、情感预测、推荐系统等。

    优缺点

    优点:
    • (1)朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
    • (2)对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,我们可以一批批的去增量训练。
    • (3)对缺失数据不太敏感,算法也比较简单,常用于文本分类。
    缺点:
    • (1)理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型给定输出类别的情况下,假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。
    • (2)需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。
    • (3)由于我们是通过先验和数据来决定后验的概率从而决定分类,所以分类决策存在一定的错误率。
    • (4)对输入数据的表达形式很敏感。
  • 相关阅读:
    SpringBoot2.x异步任务EnableAsync
    SpringBoot 整合thymeleaf
    SpringBoot 整合freemarker
    RabbitMQ的安装及入门使(Windows)
    jacoco-统计代码覆盖率并生成报告
    Spring Transactional
    [转]IIS7.5优化--提高线程数来适应高并发
    系统设计时考虑
    设计模式之策略模式
    接到一个新需求后的处理流程
  • 原文地址:https://www.cnblogs.com/chenshaowei/p/12790551.html
Copyright © 2011-2022 走看看