zoukankan      html  css  js  c++  java
  • 从一道Hard学习滑动窗口

    滑动窗口


      滑动窗口(sliding windows algorithm)这种方法,专门用于解决区间解的问题。它在运算的时候,将解集放在窗口中,结束的时候比对是否符合预期。在运算的过程中,会对窗口的左右边缘进行操作(扩大、缩小)。特别针对于线性输入解决,滑动窗口就很形象了。

    30. Substring with Concatenation of All Words

      You are given a string, s, and a list of words, words, that are all of the same length. Find all starting indices of substring(s) in s that is a concatenation of each word in words exactly once and without any intervening characters.

      题意是从一串输入字符串s中,找到能全包含words数组的起点(数组元素等长),这个起点可能有多个,而且不需要关心顺序。

    Input:
      s = "barfoothefoobarman",
      words = ["foo","bar"]
    Output: [0,9]
    Explanation: Substrings starting at index 0 and 9 are "barfoo" and "foobar" respectively.
    The output order does not matter, returning [9,0] is fine too.

      比如这个例子,他在第0个位置和第9个位置可以包含words数组,也就是0位置和9位置各有一个长度为6的窗口可以囊括words数组。

    Template = "foo","bar"
    
    i=0
    
    [b a r] f o o t h e f o o b a r m a n 
    
    [b a r f o o] t h e f o o b a r m a n 
    
    SAVE
    
    b a r f o o[] t h e f o o b a r m a n 
    
    b a r f o o [t h e] f o o b a r m a n 
    
    b a r f o o t h e [f o o] b a r m a n 
    
    b a r f o o t h e [f o o b a r] m a n 
    
    SAVE
    
    b a r f o o t h e f o o b a r[] m a n 
    
    b a r f o o t h e f o o b a r [m a n] 
    
    i=1
    
    b [a r f] o o t h e f o o b a r m a n 
    ....
    
    i=2
    
    b a [r f o] o t h e f o o b a r m a n 
    ....

       每次扩展使用单词列表中的词长,如果扩展过程中不符合预期则清除窗口,窗口左端在当前词总数大于词组总数的时候,计算总数是单词的长度(因为s除以单词长度余数是0到单词长度之间,覆盖了余数就能覆盖整个场景)。

    public class FindSubstring {
        public void test(){
            // [0,9]
            String s1 = "barfoothefoobarman";
            String[] words1 = {"foo","bar"};
            System.out.println(findSubstring(s1,words1));
            // []
            String s2 = "wordgoodgoodgoodbestword";
            String[] words2  = {"word","good","best","word"};
            System.out.println(findSubstring(s2,words2));
        }
        /**
         *  单词等长
         */
        public List<Integer> findSubstring(String s, String[] words) {
            List<Integer> result = new ArrayList<>();
            if(s == null || words.length == 0){
                return result;
            }
            int step = words[0].length();
            Map<String,Integer> counter = new HashMap<>();
            for(String word :words){
                counter.merge(word, 1, (a, b) -> a + b);
            }
    
            for(int i=0;i<step;++i){
                Map<String,Integer> window = new HashMap<>();
                int left = i;
                int right = i;
                while (right <= s.length() - step && left <= s.length() - step*words.length){
                    String sub = s.substring(right,right + step);
                    window.merge(sub,1,(a , b)->a + b);
                    if(!counter.containsKey(sub)){
                        window.clear();
                        right += step;
                        left = right;
                        continue;
                    }
                    while (window.get(sub) > counter.get(sub)){
                        String drop = s.substring(left,left+step);
                        Integer dec = window.get(drop);
                        if(dec != null){
                            if(dec<=1){
                                window.remove(drop);
                            }else {
                                window.put(drop,dec-1);
                            }
                        }
                        left += step;
                    }
                    right += step;
                    if(right - left == step * words.length){
                        result.add(left);
                    }
                }
            }
            return result;
        }
    
    }

     76. Minimum Window Substring

    Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).

    Example:

    Input: S = "ADOBECODEBANC", T = "ABC"
    Output: "BANC"

    题意是将s子串中包含T的所有字母的最短子串找出来,例子中BANC是包含ABC的最短子串。

    Template = "ABC"
    
    []A D O B E C O D E B A N C
    [A] D O B E C O D E B A N C
    [A D] O B E C O D E B A N C
    [A D O] B E C O D E B A N C
    [A D O B] E C O D E B A N C
    [A D O B E] C O D E B A N C
    [A D O B E C] O D E B A N C CONTAINS ABC mark substring A D O B E C ...
    [A D O B E C O D E B] A N C B now
    2 > 1 so moving left but A is compliance ...
    [A D O B E C O D E B A] N C A
    2 > 1 moving left
    A D O [B E C O D E B A] N C B
    2 > 1 moving left
    A D O B E [C O D E B A] N C C O D E B A is not shorter than A D O B E C ...
    A D O B E [C O D E B A N C] C
    2 > 1 moving left
    A D O B E C O D E [B A N C] B A N C is shorter than A D O B E C mark substring B A N C
    import java.util.HashMap;
    import java.util.Map;
    
    public class MinimumWindowSubstring {
        public void test(){
            String s1 = "ADOBECODEBANC";
            String t1 = "ABC";
            // BANC
            System.out.println(minWindow(s1,t1));
    
            String s2 = "a";
            String t2 = "aa";
            // ""
            System.out.println(minWindow(s2,t2));
    
            String s3 = "a";
            String t3 = "b";
            // ""
            System.out.println(minWindow(s3,t3));
    
            String s4 = "a";
            String t4 = "a";
            // a
            System.out.println(minWindow(s4,t4));
    
            String s5 = "ab";
            String t5 = "b";
            // b
            System.out.println(minWindow(s5,t5));
    
            String s6 = "aa";
            String t6 = "aa";
            // aa
            System.out.println(minWindow(s6,t6));
    
            String s7 = "acbbaca";
            String t7 = "aba";
            // baca
            System.out.println(minWindow(s7,t7));
    
            String s8 = "aaaaaaaaaaaabbbbbcdd";
            String t8 = "abcdd";
    
            System.out.println(minWindow(s8,t8));
    
    
        }
        public String minWindow(String s, String t) {
            if(s == null || t == null || s.isEmpty() || t.isEmpty() || s.length() < t.length()){
                return "";
            }
            Map<Character,Integer> counter = new HashMap<>();
            char[] sArray = s.toCharArray();
            for(char c :t.toCharArray()){
                counter.merge(c,1,(a,b)->a+b);
            }
            int left = 0;
            int right ;
            int[] ans = {-1 , 0 , 0};
            Map<Character,Integer> window = new HashMap<>();
            for(int i=0;i<sArray.length;i++){
                char c = sArray[i];
                right = i;
                if(counter.containsKey(c)){
                    window.merge(c,1,(a,b)->a+b);
                    if(window.keySet().size() == counter.keySet().size()){
                        while (true){
                            Integer dec = window.get(sArray[left]);
                            Integer standard = counter.get(sArray[left]);
                            if(dec != null && standard != null){
                                if(dec <= standard){
                                    break;
                                }
                                if(dec > standard){
                                    window.merge(sArray[left],-1,(a,b)->a+b);
                                }
                            }
                            left ++;
                        }
                        boolean valid = true;
                        for(char v : counter.keySet()){
                            if(window.get(v) < counter.get(v)){
                                valid = false;
                            }
                        }
                        // mark if initial or shorter sequence
                        if(valid && (ans[0] == -1 || right - left + 1 < ans[0])){
                            ans[0] = right - left + 1;
                            ans[1] = left;
                            ans[2] = right;
                        }
                    }
                }
            }
            return ans[0] == -1?"":s.substring(ans[1],ans[2]+1);
        }
    }

     239. Sliding Window Maximum

    Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Return the max sliding window.

    Input: nums = [1,3,-1,-3,5,3,6,7], and k = 3
    Output: [3,3,5,5,6,7] 
    Explanation: 
    
    Window position                Max
    ---------------               -----
    [1  3  -1] -3  5  3  6  7       3
     1 [3  -1  -3] 5  3  6  7       3
     1  3 [-1  -3  5] 3  6  7       5
     1  3  -1 [-3  5  3] 6  7       5
     1  3  -1  -3 [5  3  6] 7       6
     1  3  -1  -3  5 [3  6  7]      7
    class Solution {
        public int[] maxSlidingWindow(int[] nums, int k) {
            List<Integer> result = new ArrayList<>();
            if(nums == null || nums.length == 0){
                return new int[]{};
            }
            int left = 0;
            int windowMax = Integer.MIN_VALUE;
            for(int i=0;i<nums.length;i++){
                if(i - left + 1 > k){
                    int rv = nums[i];
                    int currentMax = windowMax;
                    if(nums[left] == windowMax){
                        currentMax = nums[left+1];
                        for(int t = left+1 ; t <= i ; t ++){
                            currentMax = Math.max(nums[t],currentMax);
                        }
                    }
                    windowMax = Math.max(currentMax,rv);
                    result.add(windowMax);
                    left ++ ;
                }  else {
                    windowMax = Math.max(nums[i],windowMax);
                    if(i - left + 1 == k){
                        result.add(windowMax);
                    }
                }
            }
            int[] copyRes = new int[result.size()];
            for(int index = 0 ; index < result.size() ; index ++){
                copyRes[index] = result.get(index);
            }
            return copyRes;
        }
    }




  • 相关阅读:
    javascript 闭包与函数变量作用域
    javaScript for循环
    node-inspector调试node项目
    nodejs async异步常用函数总结
    nodejs安装配置新手篇
    requirejs笔记
    使用nodejs中httpProxy代理时候出现404异常
    Bluebird-Collections
    Bluebird-Core API (三)
    Bluebird-Core API(二)
  • 原文地址:https://www.cnblogs.com/chentingk/p/11865392.html
Copyright © 2011-2022 走看看