zoukankan      html  css  js  c++  java
  • 2.在约会网站上使用k近邻算法

    在约会网站上使用k近邻算法

    思路步骤:

    1. 收集数据:提供文本文件。
    2. 准备数据:使用Python解析文本文件。
    3. 分析数据:使用Matplotlib画二维扩散图。
    4. 训练算法:此步骤不适用于k近邻算法。
    5. 测试算法:使用海伦提供的部分数据作为测试样本。
      测试样本和非测试样本的区别在于:测试样本是已经完成分类的数据,如果预测分类与实际类别不同,则标记为一个错误。
    6. 使用算法:产生简单的命令行程序,然后海伦可以输入一些特征数据以判断对方是否为自己喜欢的类型。

    正式开始:

    第1步.收集数据,提供文本文件datingTestSet.txt

       1 40920    8.326976    0.953952    largeDoses
       2 14488    7.153469    1.673904    smallDoses
       3 26052    1.441871    0.805124    didntLike
       4 75136    13.147394    0.428964    didntLike
       5 38344    1.669788    0.134296    didntLike
       6 72993    10.141740    1.032955    didntLike
       7 35948    6.830792    1.213192    largeDoses
       8 42666    13.276369    0.543880    largeDoses
       9 67497    8.631577    0.749278    didntLike
      10 35483    12.273169    1.508053    largeDoses
      11 50242    3.723498    0.831917    didntLike
      12 63275    8.385879    1.669485    didntLike
      13 5569    4.875435    0.728658    smallDoses
      14 51052    4.680098    0.625224    didntLike
      15 77372    15.299570    0.331351    didntLike
      16 43673    1.889461    0.191283    didntLike
      17 61364    7.516754    1.269164    didntLike
      18 69673    14.239195    0.261333    didntLike
      19 15669    0.000000    1.250185    smallDoses
      20 28488    10.528555    1.304844    largeDoses
      21 6487    3.540265    0.822483    smallDoses
      22 37708    2.991551    0.833920    didntLike
      23 22620    5.297865    0.638306    smallDoses
      24 28782    6.593803    0.187108    largeDoses
      25 19739    2.816760    1.686209    smallDoses
      26 36788    12.458258    0.649617    largeDoses
      27 5741    0.000000    1.656418    smallDoses
      28 28567    9.968648    0.731232    largeDoses
      29 6808    1.364838    0.640103    smallDoses
      30 41611    0.230453    1.151996    didntLike
      31 36661    11.865402    0.882810    largeDoses
      32 43605    0.120460    1.352013    didntLike
      33 15360    8.545204    1.340429    largeDoses
      34 63796    5.856649    0.160006    didntLike
      35 10743    9.665618    0.778626    smallDoses
      36 70808    9.778763    1.084103    didntLike
      37 72011    4.932976    0.632026    didntLike
      38 5914    2.216246    0.587095    smallDoses
      39 14851    14.305636    0.632317    largeDoses
      40 33553    12.591889    0.686581    largeDoses
      41 44952    3.424649    1.004504    didntLike
      42 17934    0.000000    0.147573    smallDoses
      43 27738    8.533823    0.205324    largeDoses
      44 29290    9.829528    0.238620    largeDoses
      45 42330    11.492186    0.263499    largeDoses
      46 36429    3.570968    0.832254    didntLike
      47 39623    1.771228    0.207612    didntLike
      48 32404    3.513921    0.991854    didntLike
      49 27268    4.398172    0.975024    didntLike
      50 5477    4.276823    1.174874    smallDoses
      51 14254    5.946014    1.614244    smallDoses
      52 68613    13.798970    0.724375    didntLike
      53 41539    10.393591    1.663724    largeDoses
      54 7917    3.007577    0.297302    smallDoses
      55 21331    1.031938    0.486174    smallDoses
      56 8338    4.751212    0.064693    smallDoses
      57 5176    3.692269    1.655113    smallDoses
      58 18983    10.448091    0.267652    largeDoses
      59 68837    10.585786    0.329557    didntLike
      60 13438    1.604501    0.069064    smallDoses
      61 48849    3.679497    0.961466    didntLike
      62 12285    3.795146    0.696694    smallDoses
      63 7826    2.531885    1.659173    smallDoses
      64 5565    9.733340    0.977746    smallDoses
      65 10346    6.093067    1.413798    smallDoses
      66 1823    7.712960    1.054927    smallDoses
      67 9744    11.470364    0.760461    largeDoses
      68 16857    2.886529    0.934416    smallDoses
      69 39336    10.054373    1.138351    largeDoses
      70 65230    9.972470    0.881876    didntLike
      71 2463    2.335785    1.366145    smallDoses
      72 27353    11.375155    1.528626    largeDoses
      73 16191    0.000000    0.605619    smallDoses
      74 12258    4.126787    0.357501    smallDoses
      75 42377    6.319522    1.058602    didntLike
      76 25607    8.680527    0.086955    largeDoses
      77 77450    14.856391    1.129823    didntLike
      78 58732    2.454285    0.222380    didntLike
      79 46426    7.292202    0.548607    largeDoses
      80 32688    8.745137    0.857348    largeDoses
      81 64890    8.579001    0.683048    didntLike
      82 8554    2.507302    0.869177    smallDoses
      83 28861    11.415476    1.505466    largeDoses
      84 42050    4.838540    1.680892    didntLike
      85 32193    10.339507    0.583646    largeDoses
      86 64895    6.573742    1.151433    didntLike
      87 2355    6.539397    0.462065    smallDoses
      88 0    2.209159    0.723567    smallDoses
      89 70406    11.196378    0.836326    didntLike
      90 57399    4.229595    0.128253    didntLike
      91 41732    9.505944    0.005273    largeDoses
      92 11429    8.652725    1.348934    largeDoses
      93 75270    17.101108    0.490712    didntLike
      94 5459    7.871839    0.717662    smallDoses
      95 73520    8.262131    1.361646    didntLike
      96 40279    9.015635    1.658555    largeDoses
      97 21540    9.215351    0.806762    largeDoses
      98 17694    6.375007    0.033678    smallDoses
      99 22329    2.262014    1.022169    didntLike
     100 46570    5.677110    0.709469    didntLike
     101 42403    11.293017    0.207976    largeDoses
     102 33654    6.590043    1.353117    didntLike
     103 9171    4.711960    0.194167    smallDoses
     104 28122    8.768099    1.108041    largeDoses
     105 34095    11.502519    0.545097    largeDoses
     106 1774    4.682812    0.578112    smallDoses
     107 40131    12.446578    0.300754    largeDoses
     108 13994    12.908384    1.657722    largeDoses
     109 77064    12.601108    0.974527    didntLike
     110 11210    3.929456    0.025466    smallDoses
     111 6122    9.751503    1.182050    largeDoses
     112 15341    3.043767    0.888168    smallDoses
     113 44373    4.391522    0.807100    didntLike
     114 28454    11.695276    0.679015    largeDoses
     115 63771    7.879742    0.154263    didntLike
     116 9217    5.613163    0.933632    smallDoses
     117 69076    9.140172    0.851300    didntLike
     118 24489    4.258644    0.206892    didntLike
     119 16871    6.799831    1.221171    smallDoses
     120 39776    8.752758    0.484418    largeDoses
     121 5901    1.123033    1.180352    smallDoses
     122 40987    10.833248    1.585426    largeDoses
     123 7479    3.051618    0.026781    smallDoses
     124 38768    5.308409    0.030683    largeDoses
     125 4933    1.841792    0.028099    smallDoses
     126 32311    2.261978    1.605603    didntLike
     127 26501    11.573696    1.061347    largeDoses
     128 37433    8.038764    1.083910    largeDoses
     129 23503    10.734007    0.103715    largeDoses
     130 68607    9.661909    0.350772    didntLike
     131 27742    9.005850    0.548737    largeDoses
     132 11303    0.000000    0.539131    smallDoses
     133 0    5.757140    1.062373    smallDoses
     134 32729    9.164656    1.624565    largeDoses
     135 24619    1.318340    1.436243    didntLike
     136 42414    14.075597    0.695934    largeDoses
     137 20210    10.107550    1.308398    largeDoses
     138 33225    7.960293    1.219760    largeDoses
     139 54483    6.317292    0.018209    didntLike
     140 18475    12.664194    0.595653    largeDoses
     141 33926    2.906644    0.581657    didntLike
     142 43865    2.388241    0.913938    didntLike
     143 26547    6.024471    0.486215    largeDoses
     144 44404    7.226764    1.255329    largeDoses
     145 16674    4.183997    1.275290    smallDoses
     146 8123    11.850211    1.096981    largeDoses
     147 42747    11.661797    1.167935    largeDoses
     148 56054    3.574967    0.494666    didntLike
     149 10933    0.000000    0.107475    smallDoses
     150 18121    7.937657    0.904799    largeDoses
     151 11272    3.365027    1.014085    smallDoses
     152 16297    0.000000    0.367491    smallDoses
     153 28168    13.860672    1.293270    largeDoses
     154 40963    10.306714    1.211594    largeDoses
     155 31685    7.228002    0.670670    largeDoses
     156 55164    4.508740    1.036192    didntLike
     157 17595    0.366328    0.163652    smallDoses
     158 1862    3.299444    0.575152    smallDoses
     159 57087    0.573287    0.607915    didntLike
     160 63082    9.183738    0.012280    didntLike
     161 51213    7.842646    1.060636    largeDoses
     162 6487    4.750964    0.558240    smallDoses
     163 4805    11.438702    1.556334    largeDoses
     164 30302    8.243063    1.122768    largeDoses
     165 68680    7.949017    0.271865    didntLike
     166 17591    7.875477    0.227085    smallDoses
     167 74391    9.569087    0.364856    didntLike
     168 37217    7.750103    0.869094    largeDoses
     169 42814    0.000000    1.515293    didntLike
     170 14738    3.396030    0.633977    smallDoses
     171 19896    11.916091    0.025294    largeDoses
     172 14673    0.460758    0.689586    smallDoses
     173 32011    13.087566    0.476002    largeDoses
     174 58736    4.589016    1.672600    didntLike
     175 54744    8.397217    1.534103    didntLike
     176 29482    5.562772    1.689388    didntLike
     177 27698    10.905159    0.619091    largeDoses
     178 11443    1.311441    1.169887    smallDoses
     179 56117    10.647170    0.980141    largeDoses
     180 39514    0.000000    0.481918    didntLike
     181 26627    8.503025    0.830861    largeDoses
     182 16525    0.436880    1.395314    smallDoses
     183 24368    6.127867    1.102179    didntLike
     184 22160    12.112492    0.359680    largeDoses
     185 6030    1.264968    1.141582    smallDoses
     186 6468    6.067568    1.327047    smallDoses
     187 22945    8.010964    1.681648    largeDoses
     188 18520    3.791084    0.304072    smallDoses
     189 34914    11.773195    1.262621    largeDoses
     190 6121    8.339588    1.443357    smallDoses
     191 38063    2.563092    1.464013    didntLike
     192 23410    5.954216    0.953782    didntLike
     193 35073    9.288374    0.767318    largeDoses
     194 52914    3.976796    1.043109    didntLike
     195 16801    8.585227    1.455708    largeDoses
     196 9533    1.271946    0.796506    smallDoses
     197 16721    0.000000    0.242778    smallDoses
     198 5832    0.000000    0.089749    smallDoses
     199 44591    11.521298    0.300860    largeDoses
     200 10143    1.139447    0.415373    smallDoses
     201 21609    5.699090    1.391892    smallDoses
     202 23817    2.449378    1.322560    didntLike
     203 15640    0.000000    1.228380    smallDoses
     204 8847    3.168365    0.053993    smallDoses
     205 50939    10.428610    1.126257    largeDoses
     206 28521    2.943070    1.446816    didntLike
     207 32901    10.441348    0.975283    largeDoses
     208 42850    12.478764    1.628726    largeDoses
     209 13499    5.856902    0.363883    smallDoses
     210 40345    2.476420    0.096075    didntLike
     211 43547    1.826637    0.811457    didntLike
     212 70758    4.324451    0.328235    didntLike
     213 19780    1.376085    1.178359    smallDoses
     214 44484    5.342462    0.394527    didntLike
     215 54462    11.835521    0.693301    largeDoses
     216 20085    12.423687    1.424264    largeDoses
     217 42291    12.161273    0.071131    largeDoses
     218 47550    8.148360    1.649194    largeDoses
     219 11938    1.531067    1.549756    smallDoses
     220 40699    3.200912    0.309679    didntLike
     221 70908    8.862691    0.530506    didntLike
     222 73989    6.370551    0.369350    didntLike
     223 11872    2.468841    0.145060    smallDoses
     224 48463    11.054212    0.141508    largeDoses
     225 15987    2.037080    0.715243    smallDoses
     226 70036    13.364030    0.549972    didntLike
     227 32967    10.249135    0.192735    largeDoses
     228 63249    10.464252    1.669767    didntLike
     229 42795    9.424574    0.013725    largeDoses
     230 14459    4.458902    0.268444    smallDoses
     231 19973    0.000000    0.575976    smallDoses
     232 5494    9.686082    1.029808    largeDoses
     233 67902    13.649402    1.052618    didntLike
     234 25621    13.181148    0.273014    largeDoses
     235 27545    3.877472    0.401600    didntLike
     236 58656    1.413952    0.451380    didntLike
     237 7327    4.248986    1.430249    smallDoses
     238 64555    8.779183    0.845947    didntLike
     239 8998    4.156252    0.097109    smallDoses
     240 11752    5.580018    0.158401    smallDoses
     241 76319    15.040440    1.366898    didntLike
     242 27665    12.793870    1.307323    largeDoses
     243 67417    3.254877    0.669546    didntLike
     244 21808    10.725607    0.588588    largeDoses
     245 15326    8.256473    0.765891    smallDoses
     246 20057    8.033892    1.618562    largeDoses
     247 79341    10.702532    0.204792    didntLike
     248 15636    5.062996    1.132555    smallDoses
     249 35602    10.772286    0.668721    largeDoses
     250 28544    1.892354    0.837028    didntLike
     251 57663    1.019966    0.372320    didntLike
     252 78727    15.546043    0.729742    didntLike
     253 68255    11.638205    0.409125    didntLike
     254 14964    3.427886    0.975616    smallDoses
     255 21835    11.246174    1.475586    largeDoses
     256 7487    0.000000    0.645045    smallDoses
     257 8700    0.000000    1.424017    smallDoses
     258 26226    8.242553    0.279069    largeDoses
     259 65899    8.700060    0.101807    didntLike
     260 6543    0.812344    0.260334    smallDoses
     261 46556    2.448235    1.176829    didntLike
     262 71038    13.230078    0.616147    didntLike
     263 47657    0.236133    0.340840    didntLike
     264 19600    11.155826    0.335131    largeDoses
     265 37422    11.029636    0.505769    largeDoses
     266 1363    2.901181    1.646633    smallDoses
     267 26535    3.924594    1.143120    didntLike
     268 47707    2.524806    1.292848    didntLike
     269 38055    3.527474    1.449158    didntLike
     270 6286    3.384281    0.889268    smallDoses
     271 10747    0.000000    1.107592    smallDoses
     272 44883    11.898890    0.406441    largeDoses
     273 56823    3.529892    1.375844    didntLike
     274 68086    11.442677    0.696919    didntLike
     275 70242    10.308145    0.422722    didntLike
     276 11409    8.540529    0.727373    smallDoses
     277 67671    7.156949    1.691682    didntLike
     278 61238    0.720675    0.847574    didntLike
     279 17774    0.229405    1.038603    smallDoses
     280 53376    3.399331    0.077501    didntLike
     281 30930    6.157239    0.580133    didntLike
     282 28987    1.239698    0.719989    didntLike
     283 13655    6.036854    0.016548    smallDoses
     284 7227    5.258665    0.933722    smallDoses
     285 40409    12.393001    1.571281    largeDoses
     286 13605    9.627613    0.935842    smallDoses
     287 26400    11.130453    0.597610    largeDoses
     288 13491    8.842595    0.349768    largeDoses
     289 30232    10.690010    1.456595    largeDoses
     290 43253    5.714718    1.674780    largeDoses
     291 55536    3.052505    1.335804    didntLike
     292 8807    0.000000    0.059025    smallDoses
     293 25783    9.945307    1.287952    largeDoses
     294 22812    2.719723    1.142148    didntLike
     295 77826    11.154055    1.608486    didntLike
     296 38172    2.687918    0.660836    didntLike
     297 31676    10.037847    0.962245    largeDoses
     298 74038    12.404762    1.112080    didntLike
     299 44738    10.237305    0.633422    largeDoses
     300 17410    4.745392    0.662520    smallDoses
     301 5688    4.639461    1.569431    smallDoses
     302 36642    3.149310    0.639669    didntLike
     303 29956    13.406875    1.639194    largeDoses
     304 60350    6.068668    0.881241    didntLike
     305 23758    9.477022    0.899002    largeDoses
     306 25780    3.897620    0.560201    smallDoses
     307 11342    5.463615    1.203677    smallDoses
     308 36109    3.369267    1.575043    didntLike
     309 14292    5.234562    0.825954    smallDoses
     310 11160    0.000000    0.722170    smallDoses
     311 23762    12.979069    0.504068    largeDoses
     312 39567    5.376564    0.557476    didntLike
     313 25647    13.527910    1.586732    largeDoses
     314 14814    2.196889    0.784587    smallDoses
     315 73590    10.691748    0.007509    didntLike
     316 35187    1.659242    0.447066    didntLike
     317 49459    8.369667    0.656697    largeDoses
     318 31657    13.157197    0.143248    largeDoses
     319 6259    8.199667    0.908508    smallDoses
     320 33101    4.441669    0.439381    largeDoses
     321 27107    9.846492    0.644523    largeDoses
     322 17824    0.019540    0.977949    smallDoses
     323 43536    8.253774    0.748700    largeDoses
     324 67705    6.038620    1.509646    didntLike
     325 35283    6.091587    1.694641    largeDoses
     326 71308    8.986820    1.225165    didntLike
     327 31054    11.508473    1.624296    largeDoses
     328 52387    8.807734    0.713922    largeDoses
     329 40328    0.000000    0.816676    didntLike
     330 34844    8.889202    1.665414    largeDoses
     331 11607    3.178117    0.542752    smallDoses
     332 64306    7.013795    0.139909    didntLike
     333 32721    9.605014    0.065254    largeDoses
     334 33170    1.230540    1.331674    didntLike
     335 37192    10.412811    0.890803    largeDoses
     336 13089    0.000000    0.567161    smallDoses
     337 66491    9.699991    0.122011    didntLike
     338 15941    0.000000    0.061191    smallDoses
     339 4272    4.455293    0.272135    smallDoses
     340 48812    3.020977    1.502803    didntLike
     341 28818    8.099278    0.216317    largeDoses
     342 35394    1.157764    1.603217    didntLike
     343 71791    10.105396    0.121067    didntLike
     344 40668    11.230148    0.408603    largeDoses
     345 39580    9.070058    0.011379    largeDoses
     346 11786    0.566460    0.478837    smallDoses
     347 19251    0.000000    0.487300    smallDoses
     348 56594    8.956369    1.193484    largeDoses
     349 54495    1.523057    0.620528    didntLike
     350 11844    2.749006    0.169855    smallDoses
     351 45465    9.235393    0.188350    largeDoses
     352 31033    10.555573    0.403927    largeDoses
     353 16633    6.956372    1.519308    smallDoses
     354 13887    0.636281    1.273984    smallDoses
     355 52603    3.574737    0.075163    didntLike
     356 72000    9.032486    1.461809    didntLike
     357 68497    5.958993    0.023012    didntLike
     358 35135    2.435300    1.211744    didntLike
     359 26397    10.539731    1.638248    largeDoses
     360 7313    7.646702    0.056513    smallDoses
     361 91273    20.919349    0.644571    didntLike
     362 24743    1.424726    0.838447    didntLike
     363 31690    6.748663    0.890223    largeDoses
     364 15432    2.289167    0.114881    smallDoses
     365 58394    5.548377    0.402238    didntLike
     366 33962    6.057227    0.432666    didntLike
     367 31442    10.828595    0.559955    largeDoses
     368 31044    11.318160    0.271094    largeDoses
     369 29938    13.265311    0.633903    largeDoses
     370 9875    0.000000    1.496715    smallDoses
     371 51542    6.517133    0.402519    largeDoses
     372 11878    4.934374    1.520028    smallDoses
     373 69241    10.151738    0.896433    didntLike
     374 37776    2.425781    1.559467    didntLike
     375 68997    9.778962    1.195498    didntLike
     376 67416    12.219950    0.657677    didntLike
     377 59225    7.394151    0.954434    didntLike
     378 29138    8.518535    0.742546    largeDoses
     379 5962    2.798700    0.662632    smallDoses
     380 10847    0.637930    0.617373    smallDoses
     381 70527    10.750490    0.097415    didntLike
     382 9610    0.625382    0.140969    smallDoses
     383 64734    10.027968    0.282787    didntLike
     384 25941    9.817347    0.364197    largeDoses
     385 2763    0.646828    1.266069    smallDoses
     386 55601    3.347111    0.914294    didntLike
     387 31128    11.816892    0.193798    largeDoses
     388 5181    0.000000    1.480198    smallDoses
     389 69982    10.945666    0.993219    didntLike
     390 52440    10.244706    0.280539    largeDoses
     391 57350    2.579801    1.149172    didntLike
     392 57869    2.630410    0.098869    didntLike
     393 56557    11.746200    1.695517    largeDoses
     394 42342    8.104232    1.326277    largeDoses
     395 15560    12.409743    0.790295    largeDoses
     396 34826    12.167844    1.328086    largeDoses
     397 8569    3.198408    0.299287    smallDoses
     398 77623    16.055513    0.541052    didntLike
     399 78184    7.138659    0.158481    didntLike
     400 7036    4.831041    0.761419    smallDoses
     401 69616    10.082890    1.373611    didntLike
     402 21546    10.066867    0.788470    largeDoses
     403 36715    8.129538    0.329913    largeDoses
     404 20522    3.012463    1.138108    smallDoses
     405 42349    3.720391    0.845974    didntLike
     406 9037    0.773493    1.148256    smallDoses
     407 26728    10.962941    1.037324    largeDoses
     408 587    0.177621    0.162614    smallDoses
     409 48915    3.085853    0.967899    didntLike
     410 9824    8.426781    0.202558    smallDoses
     411 4135    1.825927    1.128347    smallDoses
     412 9666    2.185155    1.010173    smallDoses
     413 59333    7.184595    1.261338    didntLike
     414 36198    0.000000    0.116525    didntLike
     415 34909    8.901752    1.033527    largeDoses
     416 47516    2.451497    1.358795    didntLike
     417 55807    3.213631    0.432044    didntLike
     418 14036    3.974739    0.723929    smallDoses
     419 42856    9.601306    0.619232    largeDoses
     420 64007    8.363897    0.445341    didntLike
     421 59428    6.381484    1.365019    didntLike
     422 13730    0.000000    1.403914    smallDoses
     423 41740    9.609836    1.438105    largeDoses
     424 63546    9.904741    0.985862    didntLike
     425 30417    7.185807    1.489102    largeDoses
     426 69636    5.466703    1.216571    didntLike
     427 64660    0.000000    0.915898    didntLike
     428 14883    4.575443    0.535671    smallDoses
     429 7965    3.277076    1.010868    smallDoses
     430 68620    10.246623    1.239634    didntLike
     431 8738    2.341735    1.060235    smallDoses
     432 7544    3.201046    0.498843    smallDoses
     433 6377    6.066013    0.120927    smallDoses
     434 36842    8.829379    0.895657    largeDoses
     435 81046    15.833048    1.568245    didntLike
     436 67736    13.516711    1.220153    didntLike
     437 32492    0.664284    1.116755    didntLike
     438 39299    6.325139    0.605109    largeDoses
     439 77289    8.677499    0.344373    didntLike
     440 33835    8.188005    0.964896    largeDoses
     441 71890    9.414263    0.384030    didntLike
     442 32054    9.196547    1.138253    largeDoses
     443 38579    10.202968    0.452363    largeDoses
     444 55984    2.119439    1.481661    didntLike
     445 72694    13.635078    0.858314    didntLike
     446 42299    0.083443    0.701669    didntLike
     447 26635    9.149096    1.051446    largeDoses
     448 8579    1.933803    1.374388    smallDoses
     449 37302    14.115544    0.676198    largeDoses
     450 22878    8.933736    0.943352    largeDoses
     451 4364    2.661254    0.946117    smallDoses
     452 4985    0.988432    1.305027    smallDoses
     453 37068    2.063741    1.125946    didntLike
     454 41137    2.220590    0.690754    didntLike
     455 67759    6.424849    0.806641    didntLike
     456 11831    1.156153    1.613674    smallDoses
     457 34502    3.032720    0.601847    didntLike
     458 4088    3.076828    0.952089    smallDoses
     459 15199    0.000000    0.318105    smallDoses
     460 17309    7.750480    0.554015    largeDoses
     461 42816    10.958135    1.482500    largeDoses
     462 43751    10.222018    0.488678    largeDoses
     463 58335    2.367988    0.435741    didntLike
     464 75039    7.686054    1.381455    didntLike
     465 42878    11.464879    1.481589    largeDoses
     466 42770    11.075735    0.089726    largeDoses
     467 8848    3.543989    0.345853    smallDoses
     468 31340    8.123889    1.282880    largeDoses
     469 41413    4.331769    0.754467    largeDoses
     470 12731    0.120865    1.211961    smallDoses
     471 22447    6.116109    0.701523    largeDoses
     472 33564    7.474534    0.505790    largeDoses
     473 48907    8.819454    0.649292    largeDoses
     474 8762    6.802144    0.615284    smallDoses
     475 46696    12.666325    0.931960    largeDoses
     476 36851    8.636180    0.399333    largeDoses
     477 67639    11.730991    1.289833    didntLike
     478 171    8.132449    0.039062    smallDoses
     479 26674    10.296589    1.496144    largeDoses
     480 8739    7.583906    1.005764    smallDoses
     481 66668    9.777806    0.496377    didntLike
     482 68732    8.833546    0.513876    didntLike
     483 69995    4.907899    1.518036    didntLike
     484 82008    8.362736    1.285939    didntLike
     485 25054    9.084726    1.606312    largeDoses
     486 33085    14.164141    0.560970    largeDoses
     487 41379    9.080683    0.989920    largeDoses
     488 39417    6.522767    0.038548    largeDoses
     489 12556    3.690342    0.462281    smallDoses
     490 39432    3.563706    0.242019    didntLike
     491 38010    1.065870    1.141569    didntLike
     492 69306    6.683796    1.456317    didntLike
     493 38000    1.712874    0.243945    didntLike
     494 46321    13.109929    1.280111    largeDoses
     495 66293    11.327910    0.780977    didntLike
     496 22730    4.545711    1.233254    didntLike
     497 5952    3.367889    0.468104    smallDoses
     498 72308    8.326224    0.567347    didntLike
     499 60338    8.978339    1.442034    didntLike
     500 13301    5.655826    1.582159    smallDoses
     501 27884    8.855312    0.570684    largeDoses
     502 11188    6.649568    0.544233    smallDoses
     503 56796    3.966325    0.850410    didntLike
     504 8571    1.924045    1.664782    smallDoses
     505 4914    6.004812    0.280369    smallDoses
     506 10784    0.000000    0.375849    smallDoses
     507 39296    9.923018    0.092192    largeDoses
     508 13113    2.389084    0.119284    smallDoses
     509 70204    13.663189    0.133251    didntLike
     510 46813    11.434976    0.321216    largeDoses
     511 11697    0.358270    1.292858    smallDoses
     512 44183    9.598873    0.223524    largeDoses
     513 2225    6.375275    0.608040    smallDoses
     514 29066    11.580532    0.458401    largeDoses
     515 4245    5.319324    1.598070    smallDoses
     516 34379    4.324031    1.603481    didntLike
     517 44441    2.358370    1.273204    didntLike
     518 2022    0.000000    1.182708    smallDoses
     519 26866    12.824376    0.890411    largeDoses
     520 57070    1.587247    1.456982    didntLike
     521 32932    8.510324    1.520683    largeDoses
     522 51967    10.428884    1.187734    largeDoses
     523 44432    8.346618    0.042318    largeDoses
     524 67066    7.541444    0.809226    didntLike
     525 17262    2.540946    1.583286    smallDoses
     526 79728    9.473047    0.692513    didntLike
     527 14259    0.352284    0.474080    smallDoses
     528 6122    0.000000    0.589826    smallDoses
     529 76879    12.405171    0.567201    didntLike
     530 11426    4.126775    0.871452    smallDoses
     531 2493    0.034087    0.335848    smallDoses
     532 19910    1.177634    0.075106    smallDoses
     533 10939    0.000000    0.479996    smallDoses
     534 17716    0.994909    0.611135    smallDoses
     535 31390    11.053664    1.180117    largeDoses
     536 20375    0.000000    1.679729    smallDoses
     537 26309    2.495011    1.459589    didntLike
     538 33484    11.516831    0.001156    largeDoses
     539 45944    9.213215    0.797743    largeDoses
     540 4249    5.332865    0.109288    smallDoses
     541 6089    0.000000    1.689771    smallDoses
     542 7513    0.000000    1.126053    smallDoses
     543 27862    12.640062    1.690903    largeDoses
     544 39038    2.693142    1.317518    didntLike
     545 19218    3.328969    0.268271    smallDoses
     546 62911    7.193166    1.117456    didntLike
     547 77758    6.615512    1.521012    didntLike
     548 27940    8.000567    0.835341    largeDoses
     549 2194    4.017541    0.512104    smallDoses
     550 37072    13.245859    0.927465    largeDoses
     551 15585    5.970616    0.813624    smallDoses
     552 25577    11.668719    0.886902    largeDoses
     553 8777    4.283237    1.272728    smallDoses
     554 29016    10.742963    0.971401    largeDoses
     555 21910    12.326672    1.592608    largeDoses
     556 12916    0.000000    0.344622    smallDoses
     557 10976    0.000000    0.922846    smallDoses
     558 79065    10.602095    0.573686    didntLike
     559 36759    10.861859    1.155054    largeDoses
     560 50011    1.229094    1.638690    didntLike
     561 1155    0.410392    1.313401    smallDoses
     562 71600    14.552711    0.616162    didntLike
     563 30817    14.178043    0.616313    largeDoses
     564 54559    14.136260    0.362388    didntLike
     565 29764    0.093534    1.207194    didntLike
     566 69100    10.929021    0.403110    didntLike
     567 47324    11.432919    0.825959    largeDoses
     568 73199    9.134527    0.586846    didntLike
     569 44461    5.071432    1.421420    didntLike
     570 45617    11.460254    1.541749    largeDoses
     571 28221    11.620039    1.103553    largeDoses
     572 7091    4.022079    0.207307    smallDoses
     573 6110    3.057842    1.631262    smallDoses
     574 79016    7.782169    0.404385    didntLike
     575 18289    7.981741    0.929789    largeDoses
     576 43679    4.601363    0.268326    didntLike
     577 22075    2.595564    1.115375    didntLike
     578 23535    10.049077    0.391045    largeDoses
     579 25301    3.265444    1.572970    smallDoses
     580 32256    11.780282    1.511014    largeDoses
     581 36951    3.075975    0.286284    didntLike
     582 31290    1.795307    0.194343    didntLike
     583 38953    11.106979    0.202415    largeDoses
     584 35257    5.994413    0.800021    didntLike
     585 25847    9.706062    1.012182    largeDoses
     586 32680    10.582992    0.836025    largeDoses
     587 62018    7.038266    1.458979    didntLike
     588 9074    0.023771    0.015314    smallDoses
     589 33004    12.823982    0.676371    largeDoses
     590 44588    3.617770    0.493483    didntLike
     591 32565    8.346684    0.253317    largeDoses
     592 38563    6.104317    0.099207    didntLike
     593 75668    16.207776    0.584973    didntLike
     594 9069    6.401969    1.691873    smallDoses
     595 53395    2.298696    0.559757    didntLike
     596 28631    7.661515    0.055981    largeDoses
     597 71036    6.353608    1.645301    didntLike
     598 71142    10.442780    0.335870    didntLike
     599 37653    3.834509    1.346121    didntLike
     600 76839    10.998587    0.584555    didntLike
     601 9916    2.695935    1.512111    smallDoses
     602 38889    3.356646    0.324230    didntLike
     603 39075    14.677836    0.793183    largeDoses
     604 48071    1.551934    0.130902    didntLike
     605 7275    2.464739    0.223502    smallDoses
     606 41804    1.533216    1.007481    didntLike
     607 35665    12.473921    0.162910    largeDoses
     608 67956    6.491596    0.032576    didntLike
     609 41892    10.506276    1.510747    largeDoses
     610 38844    4.380388    0.748506    didntLike
     611 74197    13.670988    1.687944    didntLike
     612 14201    8.317599    0.390409    smallDoses
     613 3908    0.000000    0.556245    smallDoses
     614 2459    0.000000    0.290218    smallDoses
     615 32027    10.095799    1.188148    largeDoses
     616 12870    0.860695    1.482632    smallDoses
     617 9880    1.557564    0.711278    smallDoses
     618 72784    10.072779    0.756030    didntLike
     619 17521    0.000000    0.431468    smallDoses
     620 50283    7.140817    0.883813    largeDoses
     621 33536    11.384548    1.438307    largeDoses
     622 9452    3.214568    1.083536    smallDoses
     623 37457    11.720655    0.301636    largeDoses
     624 17724    6.374475    1.475925    largeDoses
     625 43869    5.749684    0.198875    largeDoses
     626 264    3.871808    0.552602    smallDoses
     627 25736    8.336309    0.636238    largeDoses
     628 39584    9.710442    1.503735    largeDoses
     629 31246    1.532611    1.433898    didntLike
     630 49567    9.785785    0.984614    largeDoses
     631 7052    2.633627    1.097866    smallDoses
     632 35493    9.238935    0.494701    largeDoses
     633 10986    1.205656    1.398803    smallDoses
     634 49508    3.124909    1.670121    didntLike
     635 5734    7.935489    1.585044    smallDoses
     636 65479    12.746636    1.560352    didntLike
     637 77268    10.732563    0.545321    didntLike
     638 28490    3.977403    0.766103    didntLike
     639 13546    4.194426    0.450663    smallDoses
     640 37166    9.610286    0.142912    largeDoses
     641 16381    4.797555    1.260455    smallDoses
     642 10848    1.615279    0.093002    smallDoses
     643 35405    4.614771    1.027105    didntLike
     644 15917    0.000000    1.369726    smallDoses
     645 6131    0.608457    0.512220    smallDoses
     646 67432    6.558239    0.667579    didntLike
     647 30354    12.315116    0.197068    largeDoses
     648 69696    7.014973    1.494616    didntLike
     649 33481    8.822304    1.194177    largeDoses
     650 43075    10.086796    0.570455    largeDoses
     651 38343    7.241614    1.661627    largeDoses
     652 14318    4.602395    1.511768    smallDoses
     653 5367    7.434921    0.079792    smallDoses
     654 37894    10.467570    1.595418    largeDoses
     655 36172    9.948127    0.003663    largeDoses
     656 40123    2.478529    1.568987    didntLike
     657 10976    5.938545    0.878540    smallDoses
     658 12705    0.000000    0.948004    smallDoses
     659 12495    5.559181    1.357926    smallDoses
     660 35681    9.776654    0.535966    largeDoses
     661 46202    3.092056    0.490906    didntLike
     662 11505    0.000000    1.623311    smallDoses
     663 22834    4.459495    0.538867    didntLike
     664 49901    8.334306    1.646600    largeDoses
     665 71932    11.226654    0.384686    didntLike
     666 13279    3.904737    1.597294    smallDoses
     667 49112    7.038205    1.211329    largeDoses
     668 77129    9.836120    1.054340    didntLike
     669 37447    1.990976    0.378081    didntLike
     670 62397    9.005302    0.485385    didntLike
     671 0    1.772510    1.039873    smallDoses
     672 15476    0.458674    0.819560    smallDoses
     673 40625    10.003919    0.231658    largeDoses
     674 36706    0.520807    1.476008    didntLike
     675 28580    10.678214    1.431837    largeDoses
     676 25862    4.425992    1.363842    didntLike
     677 63488    12.035355    0.831222    didntLike
     678 33944    10.606732    1.253858    largeDoses
     679 30099    1.568653    0.684264    didntLike
     680 13725    2.545434    0.024271    smallDoses
     681 36768    10.264062    0.982593    largeDoses
     682 64656    9.866276    0.685218    didntLike
     683 14927    0.142704    0.057455    smallDoses
     684 43231    9.853270    1.521432    largeDoses
     685 66087    6.596604    1.653574    didntLike
     686 19806    2.602287    1.321481    smallDoses
     687 41081    10.411776    0.664168    largeDoses
     688 10277    7.083449    0.622589    smallDoses
     689 7014    2.080068    1.254441    smallDoses
     690 17275    0.522844    1.622458    smallDoses
     691 31600    10.362000    1.544827    largeDoses
     692 59956    3.412967    1.035410    didntLike
     693 42181    6.796548    1.112153    largeDoses
     694 51743    4.092035    0.075804    didntLike
     695 5194    2.763811    1.564325    smallDoses
     696 30832    12.547439    1.402443    largeDoses
     697 7976    5.708052    1.596152    smallDoses
     698 14602    4.558025    0.375806    smallDoses
     699 41571    11.642307    0.438553    largeDoses
     700 55028    3.222443    0.121399    didntLike
     701 5837    4.736156    0.029871    smallDoses
     702 39808    10.839526    0.836323    largeDoses
     703 20944    4.194791    0.235483    smallDoses
     704 22146    14.936259    0.888582    largeDoses
     705 42169    3.310699    1.521855    didntLike
     706 7010    2.971931    0.034321    smallDoses
     707 3807    9.261667    0.537807    smallDoses
     708 29241    7.791833    1.111416    largeDoses
     709 52696    1.480470    1.028750    didntLike
     710 42545    3.677287    0.244167    didntLike
     711 24437    2.202967    1.370399    didntLike
     712 16037    5.796735    0.935893    smallDoses
     713 8493    3.063333    0.144089    smallDoses
     714 68080    11.233094    0.492487    didntLike
     715 59016    1.965570    0.005697    didntLike
     716 11810    8.616719    0.137419    smallDoses
     717 68630    6.609989    1.083505    didntLike
     718 7629    1.712639    1.086297    smallDoses
     719 71992    10.117445    1.299319    didntLike
     720 13398    0.000000    1.104178    smallDoses
     721 26241    9.824777    1.346821    largeDoses
     722 11160    1.653089    0.980949    smallDoses
     723 76701    18.178822    1.473671    didntLike
     724 32174    6.781126    0.885340    largeDoses
     725 45043    8.206750    1.549223    largeDoses
     726 42173    10.081853    1.376745    largeDoses
     727 69801    6.288742    0.112799    didntLike
     728 41737    3.695937    1.543589    didntLike
     729 46979    6.726151    1.069380    largeDoses
     730 79267    12.969999    1.568223    didntLike
     731 4615    2.661390    1.531933    smallDoses
     732 32907    7.072764    1.117386    largeDoses
     733 37444    9.123366    1.318988    largeDoses
     734 569    3.743946    1.039546    smallDoses
     735 8723    2.341300    0.219361    smallDoses
     736 6024    0.541913    0.592348    smallDoses
     737 52252    2.310828    1.436753    didntLike
     738 8358    6.226597    1.427316    smallDoses
     739 26166    7.277876    0.489252    largeDoses
     740 18471    0.000000    0.389459    smallDoses
     741 3386    7.218221    1.098828    smallDoses
     742 41544    8.777129    1.111464    largeDoses
     743 10480    2.813428    0.819419    smallDoses
     744 5894    2.268766    1.412130    smallDoses
     745 7273    6.283627    0.571292    smallDoses
     746 22272    7.520081    1.626868    largeDoses
     747 31369    11.739225    0.027138    largeDoses
     748 10708    3.746883    0.877350    smallDoses
     749 69364    12.089835    0.521631    didntLike
     750 37760    12.310404    0.259339    largeDoses
     751 13004    0.000000    0.671355    smallDoses
     752 37885    2.728800    0.331502    didntLike
     753 52555    10.814342    0.607652    largeDoses
     754 38997    12.170268    0.844205    largeDoses
     755 69698    6.698371    0.240084    didntLike
     756 11783    3.632672    1.643479    smallDoses
     757 47636    10.059991    0.892361    largeDoses
     758 15744    1.887674    0.756162    smallDoses
     759 69058    8.229125    0.195886    didntLike
     760 33057    7.817082    0.476102    largeDoses
     761 28681    12.277230    0.076805    largeDoses
     762 34042    10.055337    1.115778    largeDoses
     763 29928    3.596002    1.485952    didntLike
     764 9734    2.755530    1.420655    smallDoses
     765 7344    7.780991    0.513048    smallDoses
     766 7387    0.093705    0.391834    smallDoses
     767 33957    8.481567    0.520078    largeDoses
     768 9936    3.865584    0.110062    smallDoses
     769 36094    9.683709    0.779984    largeDoses
     770 39835    10.617255    1.359970    largeDoses
     771 64486    7.203216    1.624762    didntLike
     772 0    7.601414    1.215605    smallDoses
     773 39539    1.386107    1.417070    didntLike
     774 66972    9.129253    0.594089    didntLike
     775 15029    1.363447    0.620841    smallDoses
     776 44909    3.181399    0.359329    didntLike
     777 38183    13.365414    0.217011    largeDoses
     778 37372    4.207717    1.289767    didntLike
     779 0    4.088395    0.870075    smallDoses
     780 17786    3.327371    1.142505    smallDoses
     781 39055    1.303323    1.235650    didntLike
     782 37045    7.999279    1.581763    largeDoses
     783 6435    2.217488    0.864536    smallDoses
     784 72265    7.751808    0.192451    didntLike
     785 28152    14.149305    1.591532    largeDoses
     786 25931    8.765721    0.152808    largeDoses
     787 7538    3.408996    0.184896    smallDoses
     788 1315    1.251021    0.112340    smallDoses
     789 12292    6.160619    1.537165    smallDoses
     790 49248    1.034538    1.585162    didntLike
     791 9025    0.000000    1.034635    smallDoses
     792 13438    2.355051    0.542603    smallDoses
     793 69683    6.614543    0.153771    didntLike
     794 25374    10.245062    1.450903    largeDoses
     795 55264    3.467074    1.231019    didntLike
     796 38324    7.487678    1.572293    largeDoses
     797 69643    4.624115    1.185192    didntLike
     798 44058    8.995957    1.436479    largeDoses
     799 41316    11.564476    0.007195    largeDoses
     800 29119    3.440948    0.078331    didntLike
     801 51656    1.673603    0.732746    didntLike
     802 3030    4.719341    0.699755    smallDoses
     803 35695    10.304798    1.576488    largeDoses
     804 1537    2.086915    1.199312    smallDoses
     805 9083    6.338220    1.131305    smallDoses
     806 47744    8.254926    0.710694    largeDoses
     807 71372    16.067108    0.974142    didntLike
     808 37980    1.723201    0.310488    didntLike
     809 42385    3.785045    0.876904    didntLike
     810 22687    2.557561    0.123738    didntLike
     811 39512    9.852220    1.095171    largeDoses
     812 11885    3.679147    1.557205    smallDoses
     813 4944    9.789681    0.852971    smallDoses
     814 73230    14.958998    0.526707    didntLike
     815 17585    11.182148    1.288459    largeDoses
     816 68737    7.528533    1.657487    didntLike
     817 13818    5.253802    1.378603    smallDoses
     818 31662    13.946752    1.426657    largeDoses
     819 86686    15.557263    1.430029    didntLike
     820 43214    12.483550    0.688513    largeDoses
     821 24091    2.317302    1.411137    didntLike
     822 52544    10.069724    0.766119    largeDoses
     823 61861    5.792231    1.615483    didntLike
     824 47903    4.138435    0.475994    didntLike
     825 37190    12.929517    0.304378    largeDoses
     826 6013    9.378238    0.307392    smallDoses
     827 27223    8.361362    1.643204    largeDoses
     828 69027    7.939406    1.325042    didntLike
     829 78642    10.735384    0.705788    didntLike
     830 30254    11.592723    0.286188    largeDoses
     831 21704    10.098356    0.704748    largeDoses
     832 34985    9.299025    0.545337    largeDoses
     833 31316    11.158297    0.218067    largeDoses
     834 76368    16.143900    0.558388    didntLike
     835 27953    10.971700    1.221787    largeDoses
     836 152    0.000000    0.681478    smallDoses
     837 9146    3.178961    1.292692    smallDoses
     838 75346    17.625350    0.339926    didntLike
     839 26376    1.995833    0.267826    didntLike
     840 35255    10.640467    0.416181    largeDoses
     841 19198    9.628339    0.985462    largeDoses
     842 12518    4.662664    0.495403    smallDoses
     843 25453    5.754047    1.382742    smallDoses
     844 12530    0.000000    0.037146    smallDoses
     845 62230    9.334332    0.198118    didntLike
     846 9517    3.846162    0.619968    smallDoses
     847 71161    10.685084    0.678179    didntLike
     848 1593    4.752134    0.359205    smallDoses
     849 33794    0.697630    0.966786    didntLike
     850 39710    10.365836    0.505898    largeDoses
     851 16941    0.461478    0.352865    smallDoses
     852 69209    11.339537    1.068740    didntLike
     853 4446    5.420280    0.127310    smallDoses
     854 9347    3.469955    1.619947    smallDoses
     855 55635    8.517067    0.994858    largeDoses
     856 65889    8.306512    0.413690    didntLike
     857 10753    2.628690    0.444320    smallDoses
     858 7055    0.000000    0.802985    smallDoses
     859 7905    0.000000    1.170397    smallDoses
     860 53447    7.298767    1.582346    largeDoses
     861 9194    7.331319    1.277988    smallDoses
     862 61914    9.392269    0.151617    didntLike
     863 15630    5.541201    1.180596    smallDoses
     864 79194    15.149460    0.537540    didntLike
     865 12268    5.515189    0.250562    smallDoses
     866 33682    7.728898    0.920494    largeDoses
     867 26080    11.318785    1.510979    largeDoses
     868 19119    3.574709    1.531514    smallDoses
     869 30902    7.350965    0.026332    largeDoses
     870 63039    7.122363    1.630177    didntLike
     871 51136    1.828412    1.013702    didntLike
     872 35262    10.117989    1.156862    largeDoses
     873 42776    11.309897    0.086291    largeDoses
     874 64191    8.342034    1.388569    didntLike
     875 15436    0.241714    0.715577    smallDoses
     876 14402    10.482619    1.694972    smallDoses
     877 6341    9.289510    1.428879    smallDoses
     878 14113    4.269419    0.134181    smallDoses
     879 6390    0.000000    0.189456    smallDoses
     880 8794    0.817119    0.143668    smallDoses
     881 43432    1.508394    0.652651    didntLike
     882 38334    9.359918    0.052262    largeDoses
     883 34068    10.052333    0.550423    largeDoses
     884 30819    11.111660    0.989159    largeDoses
     885 22239    11.265971    0.724054    largeDoses
     886 28725    10.383830    0.254836    largeDoses
     887 57071    3.878569    1.377983    didntLike
     888 72420    13.679237    0.025346    didntLike
     889 28294    10.526846    0.781569    largeDoses
     890 9896    0.000000    0.924198    smallDoses
     891 65821    4.106727    1.085669    didntLike
     892 7645    8.118856    1.470686    smallDoses
     893 71289    7.796874    0.052336    didntLike
     894 5128    2.789669    1.093070    smallDoses
     895 13711    6.226962    0.287251    smallDoses
     896 22240    10.169548    1.660104    largeDoses
     897 15092    0.000000    1.370549    smallDoses
     898 5017    7.513353    0.137348    smallDoses
     899 10141    8.240793    0.099735    smallDoses
     900 35570    14.612797    1.247390    largeDoses
     901 46893    3.562976    0.445386    didntLike
     902 8178    3.230482    1.331698    smallDoses
     903 55783    3.612548    1.551911    didntLike
     904 1148    0.000000    0.332365    smallDoses
     905 10062    3.931299    0.487577    smallDoses
     906 74124    14.752342    1.155160    didntLike
     907 66603    10.261887    1.628085    didntLike
     908 11893    2.787266    1.570402    smallDoses
     909 50908    15.112319    1.324132    largeDoses
     910 39891    5.184553    0.223382    largeDoses
     911 65915    3.868359    0.128078    didntLike
     912 65678    3.507965    0.028904    didntLike
     913 62996    11.019254    0.427554    didntLike
     914 36851    3.812387    0.655245    didntLike
     915 36669    11.056784    0.378725    largeDoses
     916 38876    8.826880    1.002328    largeDoses
     917 26878    11.173861    1.478244    largeDoses
     918 46246    11.506465    0.421993    largeDoses
     919 12761    7.798138    0.147917    largeDoses
     920 35282    10.155081    1.370039    largeDoses
     921 68306    10.645275    0.693453    didntLike
     922 31262    9.663200    1.521541    largeDoses
     923 34754    10.790404    1.312679    largeDoses
     924 13408    2.810534    0.219962    smallDoses
     925 30365    9.825999    1.388500    largeDoses
     926 10709    1.421316    0.677603    smallDoses
     927 24332    11.123219    0.809107    largeDoses
     928 45517    13.402206    0.661524    largeDoses
     929 6178    1.212255    0.836807    smallDoses
     930 10639    1.568446    1.297469    smallDoses
     931 29613    3.343473    1.312266    didntLike
     932 22392    5.400155    0.193494    didntLike
     933 51126    3.818754    0.590905    didntLike
     934 53644    7.973845    0.307364    largeDoses
     935 51417    9.078824    0.734876    largeDoses
     936 24859    0.153467    0.766619    didntLike
     937 61732    8.325167    0.028479    didntLike
     938 71128    7.092089    1.216733    didntLike
     939 27276    5.192485    1.094409    largeDoses
     940 30453    10.340791    1.087721    largeDoses
     941 18670    2.077169    1.019775    smallDoses
     942 70600    10.151966    0.993105    didntLike
     943 12683    0.046826    0.809614    smallDoses
     944 81597    11.221874    1.395015    didntLike
     945 69959    14.497963    1.019254    didntLike
     946 8124    3.554508    0.533462    smallDoses
     947 18867    3.522673    0.086725    smallDoses
     948 80886    14.531655    0.380172    didntLike
     949 55895    3.027528    0.885457    didntLike
     950 31587    1.845967    0.488985    didntLike
     951 10591    10.226164    0.804403    largeDoses
     952 70096    10.965926    1.212328    didntLike
     953 53151    2.129921    1.477378    didntLike
     954 11992    0.000000    1.606849    smallDoses
     955 33114    9.489005    0.827814    largeDoses
     956 7413    0.000000    1.020797    smallDoses
     957 10583    0.000000    1.270167    smallDoses
     958 58668    6.556676    0.055183    didntLike
     959 35018    9.959588    0.060020    largeDoses
     960 70843    7.436056    1.479856    didntLike
     961 14011    0.404888    0.459517    smallDoses
     962 35015    9.952942    1.650279    largeDoses
     963 70839    15.600252    0.021935    didntLike
     964 3024    2.723846    0.387455    smallDoses
     965 5526    0.513866    1.323448    smallDoses
     966 5113    0.000000    0.861859    smallDoses
     967 20851    7.280602    1.438470    smallDoses
     968 40999    9.161978    1.110180    largeDoses
     969 15823    0.991725    0.730979    smallDoses
     970 35432    7.398380    0.684218    largeDoses
     971 53711    12.149747    1.389088    largeDoses
     972 64371    9.149678    0.874905    didntLike
     973 9289    9.666576    1.370330    smallDoses
     974 60613    3.620110    0.287767    didntLike
     975 18338    5.238800    1.253646    smallDoses
     976 22845    14.715782    1.503758    largeDoses
     977 74676    14.445740    1.211160    didntLike
     978 34143    13.609528    0.364240    largeDoses
     979 14153    3.141585    0.424280    smallDoses
     980 9327    0.000000    0.120947    smallDoses
     981 18991    0.454750    1.033280    smallDoses
     982 9193    0.510310    0.016395    smallDoses
     983 2285    3.864171    0.616349    smallDoses
     984 9493    6.724021    0.563044    smallDoses
     985 2371    4.289375    0.012563    smallDoses
     986 13963    0.000000    1.437030    smallDoses
     987 2299    3.733617    0.698269    smallDoses
     988 5262    2.002589    1.380184    smallDoses
     989 4659    2.502627    0.184223    smallDoses
     990 17582    6.382129    0.876581    smallDoses
     991 27750    8.546741    0.128706    largeDoses
     992 9868    2.694977    0.432818    smallDoses
     993 18333    3.951256    0.333300    smallDoses
     994 3780    9.856183    0.329181    smallDoses
     995 18190    2.068962    0.429927    smallDoses
     996 11145    3.410627    0.631838    smallDoses
     997 68846    9.974715    0.669787    didntLike
     998 26575    10.650102    0.866627    largeDoses
     999 48111    9.134528    0.728045    largeDoses
    1000 43757    7.882601    1.332446    largeDoses
    View Code

    1.2把文本文件初步处理,分类换成数字datingTestSet2.txt:

    40920    8.326976    0.953952    3
    14488    7.153469    1.673904    2
    26052    1.441871    0.805124    1
    75136    13.147394    0.428964    1
    38344    1.669788    0.134296    1
    72993    10.141740    1.032955    1
    35948    6.830792    1.213192    3
    42666    13.276369    0.543880    3
    67497    8.631577    0.749278    1
    35483    12.273169    1.508053    3
    50242    3.723498    0.831917    1
    63275    8.385879    1.669485    1
    5569    4.875435    0.728658    2
    51052    4.680098    0.625224    1
    77372    15.299570    0.331351    1
    43673    1.889461    0.191283    1
    61364    7.516754    1.269164    1
    69673    14.239195    0.261333    1
    15669    0.000000    1.250185    2
    28488    10.528555    1.304844    3
    6487    3.540265    0.822483    2
    37708    2.991551    0.833920    1
    22620    5.297865    0.638306    2
    28782    6.593803    0.187108    3
    19739    2.816760    1.686209    2
    36788    12.458258    0.649617    3
    5741    0.000000    1.656418    2
    28567    9.968648    0.731232    3
    6808    1.364838    0.640103    2
    41611    0.230453    1.151996    1
    36661    11.865402    0.882810    3
    43605    0.120460    1.352013    1
    15360    8.545204    1.340429    3
    63796    5.856649    0.160006    1
    10743    9.665618    0.778626    2
    70808    9.778763    1.084103    1
    72011    4.932976    0.632026    1
    5914    2.216246    0.587095    2
    14851    14.305636    0.632317    3
    33553    12.591889    0.686581    3
    44952    3.424649    1.004504    1
    17934    0.000000    0.147573    2
    27738    8.533823    0.205324    3
    29290    9.829528    0.238620    3
    42330    11.492186    0.263499    3
    36429    3.570968    0.832254    1
    39623    1.771228    0.207612    1
    32404    3.513921    0.991854    1
    27268    4.398172    0.975024    1
    5477    4.276823    1.174874    2
    14254    5.946014    1.614244    2
    68613    13.798970    0.724375    1
    41539    10.393591    1.663724    3
    7917    3.007577    0.297302    2
    21331    1.031938    0.486174    2
    8338    4.751212    0.064693    2
    5176    3.692269    1.655113    2
    18983    10.448091    0.267652    3
    68837    10.585786    0.329557    1
    13438    1.604501    0.069064    2
    48849    3.679497    0.961466    1
    12285    3.795146    0.696694    2
    7826    2.531885    1.659173    2
    5565    9.733340    0.977746    2
    10346    6.093067    1.413798    2
    1823    7.712960    1.054927    2
    9744    11.470364    0.760461    3
    16857    2.886529    0.934416    2
    39336    10.054373    1.138351    3
    65230    9.972470    0.881876    1
    2463    2.335785    1.366145    2
    27353    11.375155    1.528626    3
    16191    0.000000    0.605619    2
    12258    4.126787    0.357501    2
    42377    6.319522    1.058602    1
    25607    8.680527    0.086955    3
    77450    14.856391    1.129823    1
    58732    2.454285    0.222380    1
    46426    7.292202    0.548607    3
    32688    8.745137    0.857348    3
    64890    8.579001    0.683048    1
    8554    2.507302    0.869177    2
    28861    11.415476    1.505466    3
    42050    4.838540    1.680892    1
    32193    10.339507    0.583646    3
    64895    6.573742    1.151433    1
    2355    6.539397    0.462065    2
    0    2.209159    0.723567    2
    70406    11.196378    0.836326    1
    57399    4.229595    0.128253    1
    41732    9.505944    0.005273    3
    11429    8.652725    1.348934    3
    75270    17.101108    0.490712    1
    5459    7.871839    0.717662    2
    73520    8.262131    1.361646    1
    40279    9.015635    1.658555    3
    21540    9.215351    0.806762    3
    17694    6.375007    0.033678    2
    22329    2.262014    1.022169    1
    46570    5.677110    0.709469    1
    42403    11.293017    0.207976    3
    33654    6.590043    1.353117    1
    9171    4.711960    0.194167    2
    28122    8.768099    1.108041    3
    34095    11.502519    0.545097    3
    1774    4.682812    0.578112    2
    40131    12.446578    0.300754    3
    13994    12.908384    1.657722    3
    77064    12.601108    0.974527    1
    11210    3.929456    0.025466    2
    6122    9.751503    1.182050    3
    15341    3.043767    0.888168    2
    44373    4.391522    0.807100    1
    28454    11.695276    0.679015    3
    63771    7.879742    0.154263    1
    9217    5.613163    0.933632    2
    69076    9.140172    0.851300    1
    24489    4.258644    0.206892    1
    16871    6.799831    1.221171    2
    39776    8.752758    0.484418    3
    5901    1.123033    1.180352    2
    40987    10.833248    1.585426    3
    7479    3.051618    0.026781    2
    38768    5.308409    0.030683    3
    4933    1.841792    0.028099    2
    32311    2.261978    1.605603    1
    26501    11.573696    1.061347    3
    37433    8.038764    1.083910    3
    23503    10.734007    0.103715    3
    68607    9.661909    0.350772    1
    27742    9.005850    0.548737    3
    11303    0.000000    0.539131    2
    0    5.757140    1.062373    2
    32729    9.164656    1.624565    3
    24619    1.318340    1.436243    1
    42414    14.075597    0.695934    3
    20210    10.107550    1.308398    3
    33225    7.960293    1.219760    3
    54483    6.317292    0.018209    1
    18475    12.664194    0.595653    3
    33926    2.906644    0.581657    1
    43865    2.388241    0.913938    1
    26547    6.024471    0.486215    3
    44404    7.226764    1.255329    3
    16674    4.183997    1.275290    2
    8123    11.850211    1.096981    3
    42747    11.661797    1.167935    3
    56054    3.574967    0.494666    1
    10933    0.000000    0.107475    2
    18121    7.937657    0.904799    3
    11272    3.365027    1.014085    2
    16297    0.000000    0.367491    2
    28168    13.860672    1.293270    3
    40963    10.306714    1.211594    3
    31685    7.228002    0.670670    3
    55164    4.508740    1.036192    1
    17595    0.366328    0.163652    2
    1862    3.299444    0.575152    2
    57087    0.573287    0.607915    1
    63082    9.183738    0.012280    1
    51213    7.842646    1.060636    3
    6487    4.750964    0.558240    2
    4805    11.438702    1.556334    3
    30302    8.243063    1.122768    3
    68680    7.949017    0.271865    1
    17591    7.875477    0.227085    2
    74391    9.569087    0.364856    1
    37217    7.750103    0.869094    3
    42814    0.000000    1.515293    1
    14738    3.396030    0.633977    2
    19896    11.916091    0.025294    3
    14673    0.460758    0.689586    2
    32011    13.087566    0.476002    3
    58736    4.589016    1.672600    1
    54744    8.397217    1.534103    1
    29482    5.562772    1.689388    1
    27698    10.905159    0.619091    3
    11443    1.311441    1.169887    2
    56117    10.647170    0.980141    3
    39514    0.000000    0.481918    1
    26627    8.503025    0.830861    3
    16525    0.436880    1.395314    2
    24368    6.127867    1.102179    1
    22160    12.112492    0.359680    3
    6030    1.264968    1.141582    2
    6468    6.067568    1.327047    2
    22945    8.010964    1.681648    3
    18520    3.791084    0.304072    2
    34914    11.773195    1.262621    3
    6121    8.339588    1.443357    2
    38063    2.563092    1.464013    1
    23410    5.954216    0.953782    1
    35073    9.288374    0.767318    3
    52914    3.976796    1.043109    1
    16801    8.585227    1.455708    3
    9533    1.271946    0.796506    2
    16721    0.000000    0.242778    2
    5832    0.000000    0.089749    2
    44591    11.521298    0.300860    3
    10143    1.139447    0.415373    2
    21609    5.699090    1.391892    2
    23817    2.449378    1.322560    1
    15640    0.000000    1.228380    2
    8847    3.168365    0.053993    2
    50939    10.428610    1.126257    3
    28521    2.943070    1.446816    1
    32901    10.441348    0.975283    3
    42850    12.478764    1.628726    3
    13499    5.856902    0.363883    2
    40345    2.476420    0.096075    1
    43547    1.826637    0.811457    1
    70758    4.324451    0.328235    1
    19780    1.376085    1.178359    2
    44484    5.342462    0.394527    1
    54462    11.835521    0.693301    3
    20085    12.423687    1.424264    3
    42291    12.161273    0.071131    3
    47550    8.148360    1.649194    3
    11938    1.531067    1.549756    2
    40699    3.200912    0.309679    1
    70908    8.862691    0.530506    1
    73989    6.370551    0.369350    1
    11872    2.468841    0.145060    2
    48463    11.054212    0.141508    3
    15987    2.037080    0.715243    2
    70036    13.364030    0.549972    1
    32967    10.249135    0.192735    3
    63249    10.464252    1.669767    1
    42795    9.424574    0.013725    3
    14459    4.458902    0.268444    2
    19973    0.000000    0.575976    2
    5494    9.686082    1.029808    3
    67902    13.649402    1.052618    1
    25621    13.181148    0.273014    3
    27545    3.877472    0.401600    1
    58656    1.413952    0.451380    1
    7327    4.248986    1.430249    2
    64555    8.779183    0.845947    1
    8998    4.156252    0.097109    2
    11752    5.580018    0.158401    2
    76319    15.040440    1.366898    1
    27665    12.793870    1.307323    3
    67417    3.254877    0.669546    1
    21808    10.725607    0.588588    3
    15326    8.256473    0.765891    2
    20057    8.033892    1.618562    3
    79341    10.702532    0.204792    1
    15636    5.062996    1.132555    2
    35602    10.772286    0.668721    3
    28544    1.892354    0.837028    1
    57663    1.019966    0.372320    1
    78727    15.546043    0.729742    1
    68255    11.638205    0.409125    1
    14964    3.427886    0.975616    2
    21835    11.246174    1.475586    3
    7487    0.000000    0.645045    2
    8700    0.000000    1.424017    2
    26226    8.242553    0.279069    3
    65899    8.700060    0.101807    1
    6543    0.812344    0.260334    2
    46556    2.448235    1.176829    1
    71038    13.230078    0.616147    1
    47657    0.236133    0.340840    1
    19600    11.155826    0.335131    3
    37422    11.029636    0.505769    3
    1363    2.901181    1.646633    2
    26535    3.924594    1.143120    1
    47707    2.524806    1.292848    1
    38055    3.527474    1.449158    1
    6286    3.384281    0.889268    2
    10747    0.000000    1.107592    2
    44883    11.898890    0.406441    3
    56823    3.529892    1.375844    1
    68086    11.442677    0.696919    1
    70242    10.308145    0.422722    1
    11409    8.540529    0.727373    2
    67671    7.156949    1.691682    1
    61238    0.720675    0.847574    1
    17774    0.229405    1.038603    2
    53376    3.399331    0.077501    1
    30930    6.157239    0.580133    1
    28987    1.239698    0.719989    1
    13655    6.036854    0.016548    2
    7227    5.258665    0.933722    2
    40409    12.393001    1.571281    3
    13605    9.627613    0.935842    2
    26400    11.130453    0.597610    3
    13491    8.842595    0.349768    3
    30232    10.690010    1.456595    3
    43253    5.714718    1.674780    3
    55536    3.052505    1.335804    1
    8807    0.000000    0.059025    2
    25783    9.945307    1.287952    3
    22812    2.719723    1.142148    1
    77826    11.154055    1.608486    1
    38172    2.687918    0.660836    1
    31676    10.037847    0.962245    3
    74038    12.404762    1.112080    1
    44738    10.237305    0.633422    3
    17410    4.745392    0.662520    2
    5688    4.639461    1.569431    2
    36642    3.149310    0.639669    1
    29956    13.406875    1.639194    3
    60350    6.068668    0.881241    1
    23758    9.477022    0.899002    3
    25780    3.897620    0.560201    2
    11342    5.463615    1.203677    2
    36109    3.369267    1.575043    1
    14292    5.234562    0.825954    2
    11160    0.000000    0.722170    2
    23762    12.979069    0.504068    3
    39567    5.376564    0.557476    1
    25647    13.527910    1.586732    3
    14814    2.196889    0.784587    2
    73590    10.691748    0.007509    1
    35187    1.659242    0.447066    1
    49459    8.369667    0.656697    3
    31657    13.157197    0.143248    3
    6259    8.199667    0.908508    2
    33101    4.441669    0.439381    3
    27107    9.846492    0.644523    3
    17824    0.019540    0.977949    2
    43536    8.253774    0.748700    3
    67705    6.038620    1.509646    1
    35283    6.091587    1.694641    3
    71308    8.986820    1.225165    1
    31054    11.508473    1.624296    3
    52387    8.807734    0.713922    3
    40328    0.000000    0.816676    1
    34844    8.889202    1.665414    3
    11607    3.178117    0.542752    2
    64306    7.013795    0.139909    1
    32721    9.605014    0.065254    3
    33170    1.230540    1.331674    1
    37192    10.412811    0.890803    3
    13089    0.000000    0.567161    2
    66491    9.699991    0.122011    1
    15941    0.000000    0.061191    2
    4272    4.455293    0.272135    2
    48812    3.020977    1.502803    1
    28818    8.099278    0.216317    3
    35394    1.157764    1.603217    1
    71791    10.105396    0.121067    1
    40668    11.230148    0.408603    3
    39580    9.070058    0.011379    3
    11786    0.566460    0.478837    2
    19251    0.000000    0.487300    2
    56594    8.956369    1.193484    3
    54495    1.523057    0.620528    1
    11844    2.749006    0.169855    2
    45465    9.235393    0.188350    3
    31033    10.555573    0.403927    3
    16633    6.956372    1.519308    2
    13887    0.636281    1.273984    2
    52603    3.574737    0.075163    1
    72000    9.032486    1.461809    1
    68497    5.958993    0.023012    1
    35135    2.435300    1.211744    1
    26397    10.539731    1.638248    3
    7313    7.646702    0.056513    2
    91273    20.919349    0.644571    1
    24743    1.424726    0.838447    1
    31690    6.748663    0.890223    3
    15432    2.289167    0.114881    2
    58394    5.548377    0.402238    1
    33962    6.057227    0.432666    1
    31442    10.828595    0.559955    3
    31044    11.318160    0.271094    3
    29938    13.265311    0.633903    3
    9875    0.000000    1.496715    2
    51542    6.517133    0.402519    3
    11878    4.934374    1.520028    2
    69241    10.151738    0.896433    1
    37776    2.425781    1.559467    1
    68997    9.778962    1.195498    1
    67416    12.219950    0.657677    1
    59225    7.394151    0.954434    1
    29138    8.518535    0.742546    3
    5962    2.798700    0.662632    2
    10847    0.637930    0.617373    2
    70527    10.750490    0.097415    1
    9610    0.625382    0.140969    2
    64734    10.027968    0.282787    1
    25941    9.817347    0.364197    3
    2763    0.646828    1.266069    2
    55601    3.347111    0.914294    1
    31128    11.816892    0.193798    3
    5181    0.000000    1.480198    2
    69982    10.945666    0.993219    1
    52440    10.244706    0.280539    3
    57350    2.579801    1.149172    1
    57869    2.630410    0.098869    1
    56557    11.746200    1.695517    3
    42342    8.104232    1.326277    3
    15560    12.409743    0.790295    3
    34826    12.167844    1.328086    3
    8569    3.198408    0.299287    2
    77623    16.055513    0.541052    1
    78184    7.138659    0.158481    1
    7036    4.831041    0.761419    2
    69616    10.082890    1.373611    1
    21546    10.066867    0.788470    3
    36715    8.129538    0.329913    3
    20522    3.012463    1.138108    2
    42349    3.720391    0.845974    1
    9037    0.773493    1.148256    2
    26728    10.962941    1.037324    3
    587    0.177621    0.162614    2
    48915    3.085853    0.967899    1
    9824    8.426781    0.202558    2
    4135    1.825927    1.128347    2
    9666    2.185155    1.010173    2
    59333    7.184595    1.261338    1
    36198    0.000000    0.116525    1
    34909    8.901752    1.033527    3
    47516    2.451497    1.358795    1
    55807    3.213631    0.432044    1
    14036    3.974739    0.723929    2
    42856    9.601306    0.619232    3
    64007    8.363897    0.445341    1
    59428    6.381484    1.365019    1
    13730    0.000000    1.403914    2
    41740    9.609836    1.438105    3
    63546    9.904741    0.985862    1
    30417    7.185807    1.489102    3
    69636    5.466703    1.216571    1
    64660    0.000000    0.915898    1
    14883    4.575443    0.535671    2
    7965    3.277076    1.010868    2
    68620    10.246623    1.239634    1
    8738    2.341735    1.060235    2
    7544    3.201046    0.498843    2
    6377    6.066013    0.120927    2
    36842    8.829379    0.895657    3
    81046    15.833048    1.568245    1
    67736    13.516711    1.220153    1
    32492    0.664284    1.116755    1
    39299    6.325139    0.605109    3
    77289    8.677499    0.344373    1
    33835    8.188005    0.964896    3
    71890    9.414263    0.384030    1
    32054    9.196547    1.138253    3
    38579    10.202968    0.452363    3
    55984    2.119439    1.481661    1
    72694    13.635078    0.858314    1
    42299    0.083443    0.701669    1
    26635    9.149096    1.051446    3
    8579    1.933803    1.374388    2
    37302    14.115544    0.676198    3
    22878    8.933736    0.943352    3
    4364    2.661254    0.946117    2
    4985    0.988432    1.305027    2
    37068    2.063741    1.125946    1
    41137    2.220590    0.690754    1
    67759    6.424849    0.806641    1
    11831    1.156153    1.613674    2
    34502    3.032720    0.601847    1
    4088    3.076828    0.952089    2
    15199    0.000000    0.318105    2
    17309    7.750480    0.554015    3
    42816    10.958135    1.482500    3
    43751    10.222018    0.488678    3
    58335    2.367988    0.435741    1
    75039    7.686054    1.381455    1
    42878    11.464879    1.481589    3
    42770    11.075735    0.089726    3
    8848    3.543989    0.345853    2
    31340    8.123889    1.282880    3
    41413    4.331769    0.754467    3
    12731    0.120865    1.211961    2
    22447    6.116109    0.701523    3
    33564    7.474534    0.505790    3
    48907    8.819454    0.649292    3
    8762    6.802144    0.615284    2
    46696    12.666325    0.931960    3
    36851    8.636180    0.399333    3
    67639    11.730991    1.289833    1
    171    8.132449    0.039062    2
    26674    10.296589    1.496144    3
    8739    7.583906    1.005764    2
    66668    9.777806    0.496377    1
    68732    8.833546    0.513876    1
    69995    4.907899    1.518036    1
    82008    8.362736    1.285939    1
    25054    9.084726    1.606312    3
    33085    14.164141    0.560970    3
    41379    9.080683    0.989920    3
    39417    6.522767    0.038548    3
    12556    3.690342    0.462281    2
    39432    3.563706    0.242019    1
    38010    1.065870    1.141569    1
    69306    6.683796    1.456317    1
    38000    1.712874    0.243945    1
    46321    13.109929    1.280111    3
    66293    11.327910    0.780977    1
    22730    4.545711    1.233254    1
    5952    3.367889    0.468104    2
    72308    8.326224    0.567347    1
    60338    8.978339    1.442034    1
    13301    5.655826    1.582159    2
    27884    8.855312    0.570684    3
    11188    6.649568    0.544233    2
    56796    3.966325    0.850410    1
    8571    1.924045    1.664782    2
    4914    6.004812    0.280369    2
    10784    0.000000    0.375849    2
    39296    9.923018    0.092192    3
    13113    2.389084    0.119284    2
    70204    13.663189    0.133251    1
    46813    11.434976    0.321216    3
    11697    0.358270    1.292858    2
    44183    9.598873    0.223524    3
    2225    6.375275    0.608040    2
    29066    11.580532    0.458401    3
    4245    5.319324    1.598070    2
    34379    4.324031    1.603481    1
    44441    2.358370    1.273204    1
    2022    0.000000    1.182708    2
    26866    12.824376    0.890411    3
    57070    1.587247    1.456982    1
    32932    8.510324    1.520683    3
    51967    10.428884    1.187734    3
    44432    8.346618    0.042318    3
    67066    7.541444    0.809226    1
    17262    2.540946    1.583286    2
    79728    9.473047    0.692513    1
    14259    0.352284    0.474080    2
    6122    0.000000    0.589826    2
    76879    12.405171    0.567201    1
    11426    4.126775    0.871452    2
    2493    0.034087    0.335848    2
    19910    1.177634    0.075106    2
    10939    0.000000    0.479996    2
    17716    0.994909    0.611135    2
    31390    11.053664    1.180117    3
    20375    0.000000    1.679729    2
    26309    2.495011    1.459589    1
    33484    11.516831    0.001156    3
    45944    9.213215    0.797743    3
    4249    5.332865    0.109288    2
    6089    0.000000    1.689771    2
    7513    0.000000    1.126053    2
    27862    12.640062    1.690903    3
    39038    2.693142    1.317518    1
    19218    3.328969    0.268271    2
    62911    7.193166    1.117456    1
    77758    6.615512    1.521012    1
    27940    8.000567    0.835341    3
    2194    4.017541    0.512104    2
    37072    13.245859    0.927465    3
    15585    5.970616    0.813624    2
    25577    11.668719    0.886902    3
    8777    4.283237    1.272728    2
    29016    10.742963    0.971401    3
    21910    12.326672    1.592608    3
    12916    0.000000    0.344622    2
    10976    0.000000    0.922846    2
    79065    10.602095    0.573686    1
    36759    10.861859    1.155054    3
    50011    1.229094    1.638690    1
    1155    0.410392    1.313401    2
    71600    14.552711    0.616162    1
    30817    14.178043    0.616313    3
    54559    14.136260    0.362388    1
    29764    0.093534    1.207194    1
    69100    10.929021    0.403110    1
    47324    11.432919    0.825959    3
    73199    9.134527    0.586846    1
    44461    5.071432    1.421420    1
    45617    11.460254    1.541749    3
    28221    11.620039    1.103553    3
    7091    4.022079    0.207307    2
    6110    3.057842    1.631262    2
    79016    7.782169    0.404385    1
    18289    7.981741    0.929789    3
    43679    4.601363    0.268326    1
    22075    2.595564    1.115375    1
    23535    10.049077    0.391045    3
    25301    3.265444    1.572970    2
    32256    11.780282    1.511014    3
    36951    3.075975    0.286284    1
    31290    1.795307    0.194343    1
    38953    11.106979    0.202415    3
    35257    5.994413    0.800021    1
    25847    9.706062    1.012182    3
    32680    10.582992    0.836025    3
    62018    7.038266    1.458979    1
    9074    0.023771    0.015314    2
    33004    12.823982    0.676371    3
    44588    3.617770    0.493483    1
    32565    8.346684    0.253317    3
    38563    6.104317    0.099207    1
    75668    16.207776    0.584973    1
    9069    6.401969    1.691873    2
    53395    2.298696    0.559757    1
    28631    7.661515    0.055981    3
    71036    6.353608    1.645301    1
    71142    10.442780    0.335870    1
    37653    3.834509    1.346121    1
    76839    10.998587    0.584555    1
    9916    2.695935    1.512111    2
    38889    3.356646    0.324230    1
    39075    14.677836    0.793183    3
    48071    1.551934    0.130902    1
    7275    2.464739    0.223502    2
    41804    1.533216    1.007481    1
    35665    12.473921    0.162910    3
    67956    6.491596    0.032576    1
    41892    10.506276    1.510747    3
    38844    4.380388    0.748506    1
    74197    13.670988    1.687944    1
    14201    8.317599    0.390409    2
    3908    0.000000    0.556245    2
    2459    0.000000    0.290218    2
    32027    10.095799    1.188148    3
    12870    0.860695    1.482632    2
    9880    1.557564    0.711278    2
    72784    10.072779    0.756030    1
    17521    0.000000    0.431468    2
    50283    7.140817    0.883813    3
    33536    11.384548    1.438307    3
    9452    3.214568    1.083536    2
    37457    11.720655    0.301636    3
    17724    6.374475    1.475925    3
    43869    5.749684    0.198875    3
    264    3.871808    0.552602    2
    25736    8.336309    0.636238    3
    39584    9.710442    1.503735    3
    31246    1.532611    1.433898    1
    49567    9.785785    0.984614    3
    7052    2.633627    1.097866    2
    35493    9.238935    0.494701    3
    10986    1.205656    1.398803    2
    49508    3.124909    1.670121    1
    5734    7.935489    1.585044    2
    65479    12.746636    1.560352    1
    77268    10.732563    0.545321    1
    28490    3.977403    0.766103    1
    13546    4.194426    0.450663    2
    37166    9.610286    0.142912    3
    16381    4.797555    1.260455    2
    10848    1.615279    0.093002    2
    35405    4.614771    1.027105    1
    15917    0.000000    1.369726    2
    6131    0.608457    0.512220    2
    67432    6.558239    0.667579    1
    30354    12.315116    0.197068    3
    69696    7.014973    1.494616    1
    33481    8.822304    1.194177    3
    43075    10.086796    0.570455    3
    38343    7.241614    1.661627    3
    14318    4.602395    1.511768    2
    5367    7.434921    0.079792    2
    37894    10.467570    1.595418    3
    36172    9.948127    0.003663    3
    40123    2.478529    1.568987    1
    10976    5.938545    0.878540    2
    12705    0.000000    0.948004    2
    12495    5.559181    1.357926    2
    35681    9.776654    0.535966    3
    46202    3.092056    0.490906    1
    11505    0.000000    1.623311    2
    22834    4.459495    0.538867    1
    49901    8.334306    1.646600    3
    71932    11.226654    0.384686    1
    13279    3.904737    1.597294    2
    49112    7.038205    1.211329    3
    77129    9.836120    1.054340    1
    37447    1.990976    0.378081    1
    62397    9.005302    0.485385    1
    0    1.772510    1.039873    2
    15476    0.458674    0.819560    2
    40625    10.003919    0.231658    3
    36706    0.520807    1.476008    1
    28580    10.678214    1.431837    3
    25862    4.425992    1.363842    1
    63488    12.035355    0.831222    1
    33944    10.606732    1.253858    3
    30099    1.568653    0.684264    1
    13725    2.545434    0.024271    2
    36768    10.264062    0.982593    3
    64656    9.866276    0.685218    1
    14927    0.142704    0.057455    2
    43231    9.853270    1.521432    3
    66087    6.596604    1.653574    1
    19806    2.602287    1.321481    2
    41081    10.411776    0.664168    3
    10277    7.083449    0.622589    2
    7014    2.080068    1.254441    2
    17275    0.522844    1.622458    2
    31600    10.362000    1.544827    3
    59956    3.412967    1.035410    1
    42181    6.796548    1.112153    3
    51743    4.092035    0.075804    1
    5194    2.763811    1.564325    2
    30832    12.547439    1.402443    3
    7976    5.708052    1.596152    2
    14602    4.558025    0.375806    2
    41571    11.642307    0.438553    3
    55028    3.222443    0.121399    1
    5837    4.736156    0.029871    2
    39808    10.839526    0.836323    3
    20944    4.194791    0.235483    2
    22146    14.936259    0.888582    3
    42169    3.310699    1.521855    1
    7010    2.971931    0.034321    2
    3807    9.261667    0.537807    2
    29241    7.791833    1.111416    3
    52696    1.480470    1.028750    1
    42545    3.677287    0.244167    1
    24437    2.202967    1.370399    1
    16037    5.796735    0.935893    2
    8493    3.063333    0.144089    2
    68080    11.233094    0.492487    1
    59016    1.965570    0.005697    1
    11810    8.616719    0.137419    2
    68630    6.609989    1.083505    1
    7629    1.712639    1.086297    2
    71992    10.117445    1.299319    1
    13398    0.000000    1.104178    2
    26241    9.824777    1.346821    3
    11160    1.653089    0.980949    2
    76701    18.178822    1.473671    1
    32174    6.781126    0.885340    3
    45043    8.206750    1.549223    3
    42173    10.081853    1.376745    3
    69801    6.288742    0.112799    1
    41737    3.695937    1.543589    1
    46979    6.726151    1.069380    3
    79267    12.969999    1.568223    1
    4615    2.661390    1.531933    2
    32907    7.072764    1.117386    3
    37444    9.123366    1.318988    3
    569    3.743946    1.039546    2
    8723    2.341300    0.219361    2
    6024    0.541913    0.592348    2
    52252    2.310828    1.436753    1
    8358    6.226597    1.427316    2
    26166    7.277876    0.489252    3
    18471    0.000000    0.389459    2
    3386    7.218221    1.098828    2
    41544    8.777129    1.111464    3
    10480    2.813428    0.819419    2
    5894    2.268766    1.412130    2
    7273    6.283627    0.571292    2
    22272    7.520081    1.626868    3
    31369    11.739225    0.027138    3
    10708    3.746883    0.877350    2
    69364    12.089835    0.521631    1
    37760    12.310404    0.259339    3
    13004    0.000000    0.671355    2
    37885    2.728800    0.331502    1
    52555    10.814342    0.607652    3
    38997    12.170268    0.844205    3
    69698    6.698371    0.240084    1
    11783    3.632672    1.643479    2
    47636    10.059991    0.892361    3
    15744    1.887674    0.756162    2
    69058    8.229125    0.195886    1
    33057    7.817082    0.476102    3
    28681    12.277230    0.076805    3
    34042    10.055337    1.115778    3
    29928    3.596002    1.485952    1
    9734    2.755530    1.420655    2
    7344    7.780991    0.513048    2
    7387    0.093705    0.391834    2
    33957    8.481567    0.520078    3
    9936    3.865584    0.110062    2
    36094    9.683709    0.779984    3
    39835    10.617255    1.359970    3
    64486    7.203216    1.624762    1
    0    7.601414    1.215605    2
    39539    1.386107    1.417070    1
    66972    9.129253    0.594089    1
    15029    1.363447    0.620841    2
    44909    3.181399    0.359329    1
    38183    13.365414    0.217011    3
    37372    4.207717    1.289767    1
    0    4.088395    0.870075    2
    17786    3.327371    1.142505    2
    39055    1.303323    1.235650    1
    37045    7.999279    1.581763    3
    6435    2.217488    0.864536    2
    72265    7.751808    0.192451    1
    28152    14.149305    1.591532    3
    25931    8.765721    0.152808    3
    7538    3.408996    0.184896    2
    1315    1.251021    0.112340    2
    12292    6.160619    1.537165    2
    49248    1.034538    1.585162    1
    9025    0.000000    1.034635    2
    13438    2.355051    0.542603    2
    69683    6.614543    0.153771    1
    25374    10.245062    1.450903    3
    55264    3.467074    1.231019    1
    38324    7.487678    1.572293    3
    69643    4.624115    1.185192    1
    44058    8.995957    1.436479    3
    41316    11.564476    0.007195    3
    29119    3.440948    0.078331    1
    51656    1.673603    0.732746    1
    3030    4.719341    0.699755    2
    35695    10.304798    1.576488    3
    1537    2.086915    1.199312    2
    9083    6.338220    1.131305    2
    47744    8.254926    0.710694    3
    71372    16.067108    0.974142    1
    37980    1.723201    0.310488    1
    42385    3.785045    0.876904    1
    22687    2.557561    0.123738    1
    39512    9.852220    1.095171    3
    11885    3.679147    1.557205    2
    4944    9.789681    0.852971    2
    73230    14.958998    0.526707    1
    17585    11.182148    1.288459    3
    68737    7.528533    1.657487    1
    13818    5.253802    1.378603    2
    31662    13.946752    1.426657    3
    86686    15.557263    1.430029    1
    43214    12.483550    0.688513    3
    24091    2.317302    1.411137    1
    52544    10.069724    0.766119    3
    61861    5.792231    1.615483    1
    47903    4.138435    0.475994    1
    37190    12.929517    0.304378    3
    6013    9.378238    0.307392    2
    27223    8.361362    1.643204    3
    69027    7.939406    1.325042    1
    78642    10.735384    0.705788    1
    30254    11.592723    0.286188    3
    21704    10.098356    0.704748    3
    34985    9.299025    0.545337    3
    31316    11.158297    0.218067    3
    76368    16.143900    0.558388    1
    27953    10.971700    1.221787    3
    152    0.000000    0.681478    2
    9146    3.178961    1.292692    2
    75346    17.625350    0.339926    1
    26376    1.995833    0.267826    1
    35255    10.640467    0.416181    3
    19198    9.628339    0.985462    3
    12518    4.662664    0.495403    2
    25453    5.754047    1.382742    2
    12530    0.000000    0.037146    2
    62230    9.334332    0.198118    1
    9517    3.846162    0.619968    2
    71161    10.685084    0.678179    1
    1593    4.752134    0.359205    2
    33794    0.697630    0.966786    1
    39710    10.365836    0.505898    3
    16941    0.461478    0.352865    2
    69209    11.339537    1.068740    1
    4446    5.420280    0.127310    2
    9347    3.469955    1.619947    2
    55635    8.517067    0.994858    3
    65889    8.306512    0.413690    1
    10753    2.628690    0.444320    2
    7055    0.000000    0.802985    2
    7905    0.000000    1.170397    2
    53447    7.298767    1.582346    3
    9194    7.331319    1.277988    2
    61914    9.392269    0.151617    1
    15630    5.541201    1.180596    2
    79194    15.149460    0.537540    1
    12268    5.515189    0.250562    2
    33682    7.728898    0.920494    3
    26080    11.318785    1.510979    3
    19119    3.574709    1.531514    2
    30902    7.350965    0.026332    3
    63039    7.122363    1.630177    1
    51136    1.828412    1.013702    1
    35262    10.117989    1.156862    3
    42776    11.309897    0.086291    3
    64191    8.342034    1.388569    1
    15436    0.241714    0.715577    2
    14402    10.482619    1.694972    2
    6341    9.289510    1.428879    2
    14113    4.269419    0.134181    2
    6390    0.000000    0.189456    2
    8794    0.817119    0.143668    2
    43432    1.508394    0.652651    1
    38334    9.359918    0.052262    3
    34068    10.052333    0.550423    3
    30819    11.111660    0.989159    3
    22239    11.265971    0.724054    3
    28725    10.383830    0.254836    3
    57071    3.878569    1.377983    1
    72420    13.679237    0.025346    1
    28294    10.526846    0.781569    3
    9896    0.000000    0.924198    2
    65821    4.106727    1.085669    1
    7645    8.118856    1.470686    2
    71289    7.796874    0.052336    1
    5128    2.789669    1.093070    2
    13711    6.226962    0.287251    2
    22240    10.169548    1.660104    3
    15092    0.000000    1.370549    2
    5017    7.513353    0.137348    2
    10141    8.240793    0.099735    2
    35570    14.612797    1.247390    3
    46893    3.562976    0.445386    1
    8178    3.230482    1.331698    2
    55783    3.612548    1.551911    1
    1148    0.000000    0.332365    2
    10062    3.931299    0.487577    2
    74124    14.752342    1.155160    1
    66603    10.261887    1.628085    1
    11893    2.787266    1.570402    2
    50908    15.112319    1.324132    3
    39891    5.184553    0.223382    3
    65915    3.868359    0.128078    1
    65678    3.507965    0.028904    1
    62996    11.019254    0.427554    1
    36851    3.812387    0.655245    1
    36669    11.056784    0.378725    3
    38876    8.826880    1.002328    3
    26878    11.173861    1.478244    3
    46246    11.506465    0.421993    3
    12761    7.798138    0.147917    3
    35282    10.155081    1.370039    3
    68306    10.645275    0.693453    1
    31262    9.663200    1.521541    3
    34754    10.790404    1.312679    3
    13408    2.810534    0.219962    2
    30365    9.825999    1.388500    3
    10709    1.421316    0.677603    2
    24332    11.123219    0.809107    3
    45517    13.402206    0.661524    3
    6178    1.212255    0.836807    2
    10639    1.568446    1.297469    2
    29613    3.343473    1.312266    1
    22392    5.400155    0.193494    1
    51126    3.818754    0.590905    1
    53644    7.973845    0.307364    3
    51417    9.078824    0.734876    3
    24859    0.153467    0.766619    1
    61732    8.325167    0.028479    1
    71128    7.092089    1.216733    1
    27276    5.192485    1.094409    3
    30453    10.340791    1.087721    3
    18670    2.077169    1.019775    2
    70600    10.151966    0.993105    1
    12683    0.046826    0.809614    2
    81597    11.221874    1.395015    1
    69959    14.497963    1.019254    1
    8124    3.554508    0.533462    2
    18867    3.522673    0.086725    2
    80886    14.531655    0.380172    1
    55895    3.027528    0.885457    1
    31587    1.845967    0.488985    1
    10591    10.226164    0.804403    3
    70096    10.965926    1.212328    1
    53151    2.129921    1.477378    1
    11992    0.000000    1.606849    2
    33114    9.489005    0.827814    3
    7413    0.000000    1.020797    2
    10583    0.000000    1.270167    2
    58668    6.556676    0.055183    1
    35018    9.959588    0.060020    3
    70843    7.436056    1.479856    1
    14011    0.404888    0.459517    2
    35015    9.952942    1.650279    3
    70839    15.600252    0.021935    1
    3024    2.723846    0.387455    2
    5526    0.513866    1.323448    2
    5113    0.000000    0.861859    2
    20851    7.280602    1.438470    2
    40999    9.161978    1.110180    3
    15823    0.991725    0.730979    2
    35432    7.398380    0.684218    3
    53711    12.149747    1.389088    3
    64371    9.149678    0.874905    1
    9289    9.666576    1.370330    2
    60613    3.620110    0.287767    1
    18338    5.238800    1.253646    2
    22845    14.715782    1.503758    3
    74676    14.445740    1.211160    1
    34143    13.609528    0.364240    3
    14153    3.141585    0.424280    2
    9327    0.000000    0.120947    2
    18991    0.454750    1.033280    2
    9193    0.510310    0.016395    2
    2285    3.864171    0.616349    2
    9493    6.724021    0.563044    2
    2371    4.289375    0.012563    2
    13963    0.000000    1.437030    2
    2299    3.733617    0.698269    2
    5262    2.002589    1.380184    2
    4659    2.502627    0.184223    2
    17582    6.382129    0.876581    2
    27750    8.546741    0.128706    3
    9868    2.694977    0.432818    2
    18333    3.951256    0.333300    2
    3780    9.856183    0.329181    2
    18190    2.068962    0.429927    2
    11145    3.410627    0.631838    2
    68846    9.974715    0.669787    1
    26575    10.650102    0.866627    3
    48111    9.134528    0.728045    3
    43757    7.882601    1.332446    3
    View Code

    第2步.准备数据:使用Python解析文本文件,文件名kNN.py

    from numpy import * #导入科学计算包
    import operator #运算符模块,k近邻算法执行排序操作时将使用这个模块提供的函数
    
    #文件转矩阵函数开始
    def file2matrix(filename):
        fr=open(filename)            #读取文档
        arraylines=fr.readlines()    #读取每行,结果为列表格式
        lengthlines=len(arraylines) #获取列表长度,相当于文档行数
        mats=zeros((lengthlines,3)) #创建一个以0填充的矩阵:(lengthlines行,3列)
        classLabelVector = []        #创建分类标签列表
        i=0
    
        for line in arraylines:        #处理列表
            line=line.strip()        #去除每行列表两边空格、回车等
            listFromLine=line.split('	') #用Tab键 分割列表为:[40920	8.326976	0.953952	largeDoses](	千万别写错/t,否则报错:“could not convert string to float:”)
            mats[i,:]=listFromLine[0:3]      #把列表前3个数字填入mats的矩阵:[40920	8.326976	0.953952]
            classLabelVector.append(int(listFromLine[-1])) #把列表最后一项添加入classLabelVector列表,顺序为先进排在前面,后进排后面(如果用文件datingTestSet.txt,则原int(listFromLine[-1])去除int,否则报错)
            i+=1
        return mats,classLabelVector #返回训练矩阵,和对应的分类标签

     运行:可以再最下面加入:

    if __name__=='__main__':
        #groups,labels=createDataSet()
        #print(classify0([1,0], groups, labels, 2))
    
        a,b=file2matrix('datingTestSet2.txt')
        print(a)
        print(b)

    运行2:或在命令窗输入:import kNN

    >>> import kNN
    >>> reload(kNN) #kNN有变化时,重加载 >>> datingDataMat, datingLabels = kNN.file2matrix('datingTestSet2.txt')

    第3步. 分析数据:使用Matplotlib画二维扩散图

     3.1 在KNN.py,和datingTestSet.txt 文件夹内,运行命令窗口:

    >>> import kNN
    >>> datingDataMat, datingLabels = kNN.file2matrix('datingTestSet.txt')
    >>> import matplotlib
    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> ax.scatter(datingDataMat[:,1], datingDataMat[:,2])
    >>> plt.show()

    得到下图:(x:玩视频游戏所耗时间百分比,y:每周所消费的冰淇淋公升数)

    3.2 由于没有使用样本分类的特征值,我们很难从图2-3中看到任何有用的数据模式信息。一般来说,我们会采用色彩或其他的记号来标记不同样本分类,以便更好地理解数据信息。

    在文件夹下新建一个名为test.py的文件,输入如下代码:

    import knn,matplotlib
    import matplotlib.pyplot as plt
    from numpy import array
    
    datingDataMat, datingLabels = knn.file2matrix('datingTestSet.txt')
    
    fig = plt.figure()
    ax = fig.add_subplot(111)
    #ax.scatter(datingDataMat[:,1], datingDataMat[:,2])#没有分类信息的绘图
    
    #以下for循环用于把分类字符串转换成数字:largeDoses=3,smallDoses=2,didntLike=1,(如果用文件datingTestSet2.txt则不用此循环)
    labels=[]
    for label in datingLabels:
        if label=='largeDoses':
            labels.append(3)
        elif label=='smallDoses':
            labels.append(2)
        else:
            labels.append(1)
    
    #以下for循环用于绘图,包含分类信息
    ax.scatter(datingDataMat[:,1], datingDataMat[:,2],15.0*array(labels), 15.0*array(labels))
    plt.show()

    上代码将绘制如下图:

    代码解释:上述代码利用变量datingLabels存储的类标签属性,在散点图上绘制了色彩不等、尺寸不同的点。

     4.准备数据:归一化数值

    表2-3】约会网站原始数据改进之后的样本数据:

    【公式:计算两样本间距离公式】:

     多个样本同样适用:

     例】对于本例,计算样本3、4间距离是

     为什么要数值规一】:面方程中数字差值最大的属性对计算结果的影响最大,也就是说,每年获取的飞行常客里程数对于计算结果的影响将远远大于表2-3中其他两个特征——玩视频游戏的和每周消费冰淇淋公升数——的影响。而产生这种现象的唯一原因,仅仅是因为飞行常客里程数远大于其他特征值。但海伦认为这三种特征是同等重要的,因此作为三个等权重的特征之一,飞行常客里程数并不应该如此严重地影响到计算结果。

    常用规一方式】我们通常采用的方法是将数值归一化,如将取值范围处理为0到1或者-1到1之间。

    【规一公式】:newValue = (oldValue-min)/(max-min)

    规一公式解释:

      min:数据集中的 每一列 的 最小特征值,

      max:数据集中的 每一列 的 最大特征值

      newValue:要求的最终规一值

      oldvalue:要换成规一值的值

    最终函数如下,也写在knn.py里:

    from numpy import * #导入科学计算包
    import operator #运算符模块,k近邻算法执行排序操作时将使用这个模块提供的函数
    
    #规一化大数值函数:用于处理部分数值太大情形
    def autoNorm(dataSet):
        minVals = dataSet.min(0) #返回每一列的最小值组成的列表,结果[0. 0. 0.00156]
        maxVals = dataSet.max(0) #返回每一列的最大值组成的列表,结果[9.1273000e+04 2.0919349e+01 1.6955170e+00](e+04表示:9.1273*1000)
        ranges = maxVals - minVals #返回最大-最小差值,结果[9.1273000e+04 2.0919349e+01 1.6943610e+00]
        normDataSet = zeros(shape(dataSet)) #=zero(shape(1000,3))=1000行3列以0填充的矩阵
        m = dataSet.shape[0]       #获取维度的第一个数据即行数,m=1000
        normDataSet = dataSet - tile(minVals, (m, 1)) #原数矩阵-最小数集矩阵(把最小列表转换成1000行1列与输入集一样的矩阵后才能运算)
        normDataSet = normDataSet / tile(ranges, (m, 1))  # ❶ 特征值相除 (完成规一运算(oldValue-min)/(max-min))
        return normDataSet, ranges, minVals               #返回:规一值,(max-min),最小值
    
    
    #运行函数部分
    if __name__=='__main__':
        datingDataMat, datingLabels = file2matrix('datingTestSet.txt')
        normMat, ranges, minVals = autoNorm(datingDataMat)

    代码解释:也可以只返回normMat矩阵,但是下一节我们将需要取值范围和最小值归一化测试数据

    运行2:或在命令窗口进入knn.py所在目录后运行(记得注释掉if __name__..:以下的内容):

    >>> reload(kNN)
    >>> normMat, ranges, minVals = kNN.autoNorm(datingDataMat)
    >>> normMat
    array([[ 0.33060119, 0.58918886, 0.69043973],
    [ 0.49199139, 0.50262471, 0.13468257],
    [ 0.34858782, 0.68886842, 0.59540619],
    ...,
    [ 0.93077422, 0.52696233, 0.58885466],
    [ 0.76626481, 0.44109859, 0.88192528],
    [ 0.0975718 , 0.02096883, 0.02443895]])
    >>> ranges
    array([ 8.78430000e+04, 2.02823930e+01, 1.69197100e+00])
    >>> minVals
    array([ 0. , 0. , 0.001818])

    5.测试算法:作为完整程序验证分类器

    程序如下:

    #以下函数:找一些数据进行算法测试,算出错误率
    def datingClassTest():
        hoRatio = 0.1      #取出 10%
        datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')   #调用之前写的函数将数据转矩阵
        normMat, ranges, minVals = autoNorm(datingDataMat)   #将数值规一化
        m = normMat.shape[0]  #求出数值行数,1000
        numTestVecs = int(m*hoRatio)  #取出百分之十用于测试,1000*0.1=100
        errorCount = 0.0    #用于计算错误总数
        for i in range(numTestVecs):  #循环100个
            classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3) #k值函数(测试集0-99行所有列,学习集100-最后一行所有列,标签从100行开始,k=3
            print ("the classifier came back with: %s, the real answer is: %s" % (classifierResult, datingLabels[i])) #括号内(函数算出的结果,标签实际结果)
            if (classifierResult != datingLabels[i]): errorCount += 1.0    #如果学习结果!= 实际结果,错误+1
        print ("the total error rate is: %f" % (errorCount/float(numTestVecs))) #错误比率=错误数/总测试数
        print (errorCount) #输出错误数

    运行方法1:在最后加入如下代码:

    if __name__=='__main__':
        datingClassTest()

    运行方法2:在文件夹内打开命令窗口:

    import knn
    >>> knn.datingClassTest()

    6.使用算法:构建完整可用系统

    最后总结综合一下函数:

    from numpy import * #导入科学计算包
    import operator #运算符模块,k近邻算法执行排序操作时将使用这个模块提供的函数
    
    def createDataSet():
        group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
        labels=['A','A','B','B']
        return group,labels
    
    #k近邻分类函数
    def classify0(inX, dataSet, labels, k):
        dataSetSize = dataSet.shape[0]#求数据集的维度
        diffMat = tile(inX, (dataSetSize,1)) - dataSet
        sqDiffMat = diffMat**2
        sqDistances = sqDiffMat.sum(axis=1) #axis=0是按照行求和,axis=1是按照列进行求和
        distances = sqDistances**0.5 #开根号
        sortedDistIndicies = distances.argsort()#把向量中每个元素进行排序,结果是元素的索引形成的向量
        classCount={}
        #❷ (以下两行)选择距离最小的k个点
        for i in range(k):
            voteIlabel = labels[sortedDistIndicies[i]]
            classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
            
        #❸ 排序。 3.5以上版本,原classCount.iteritems()变为classCount.items()
        sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1), reverse=True)
        return sortedClassCount[0][0]
    
    #文件转矩阵函数开始
    def file2matrix(filename):
        fr=open(filename)            #读取文档
        arraylines=fr.readlines()    #读取每行,结果为列表格式
        lengthlines=len(arraylines) #获取列表长度,相当于文档行数
        mats=zeros((lengthlines,3)) #创建一个以0填充的矩阵:(lengthlines行,3列)
    
        classLabelVector = []        #创建分类标签列表
        i=0
        for line in arraylines:        #处理列表
            line=line.strip()        #去除每行列表两边空格、回车等
            listFromLine=line.split('	') #用Tab键 分割列表为:[40920	8.326976	0.953952	largeDoses](	千万别写错/t,否则报错:“could not convert string to float:”)
            mats[i,:]=listFromLine[0:3]      #把列表前3个数字填入mats的矩阵:[40920	8.326976	0.953952]
            #if listFromLine[-1]=='largeDoses':
            classLabelVector.append(int(listFromLine[-1])) #把列表最后一项添加入classLabelVector列表,顺序为先进排在前面,后进排后面(原int()去除,否则报错)
            i+=1
        # # 以下for循环用于把分类字符串转换成数字:largeDoses=3,smallDoses=2,didntLike=1(用于兼容py3.x以后版本字符不能直接int为数字问题)
        # labels = []
        # for label in classLabelVector:
        #     if label == 'largeDoses':
        #         labels.append(3)
        #     elif label == 'smallDoses':
        #         labels.append(2)
        #     else:
        #         labels.append(1)
        return mats,classLabelVector #返回训练矩阵,和对应的分类标签
    
    #规一化大数值函数:用于处理部分数值太大情形
    def autoNorm(dataSet):
        minVals = dataSet.min(0) #返回每一列的最小值组成的列表,结果[0. 0. 0.00156]
        maxVals = dataSet.max(0) #返回每一列的最大值组成的列表,结果[9.1273000e+04 2.0919349e+01 1.6955170e+00](e+04表示:9.1273*1000)
        ranges = maxVals - minVals #返回最大-最小差值,结果[9.1273000e+04 2.0919349e+01 1.6943610e+00]
        normDataSet = zeros(shape(dataSet)) #=zero(shape(1000,3))=1000行3列以0填充的矩阵
        m = dataSet.shape[0]       #获取维度的第一个数据即行数,m=1000
        normDataSet = dataSet - tile(minVals, (m, 1)) #原数矩阵-最小数集矩阵(把最小列表转换成1000行1列与输入集一样的矩阵后才能运算)
        normDataSet = normDataSet / tile(ranges, (m, 1))  # ❶ 特征值相除 (完成规一运算(oldValue-min)/(max-min))
        return normDataSet, ranges, minVals               #返回:规一值,(max-min),最小值
    
    #以下函数:找一些数据进行算法测试,算出错误率
    def datingClassTest():
        hoRatio = 0.1      #取出 10%
        datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')   #调用之前写的函数将数据转矩阵
        normMat, ranges, minVals = autoNorm(datingDataMat)   #将数值规一化
        m = normMat.shape[0]  #求出数值行数,1000
        numTestVecs = int(m*hoRatio)  #取出百分之十用于测试,1000*0.1=100
        errorCount = 0.0    #用于计算错误总数
        for i in range(numTestVecs):  #循环100个
            classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3) #k值函数(测试集0-99行所有列,学习集100-最后一行所有列,标签从100行开始,k=3
            print ("the classifier came back with: %s, the real answer is: %s" % (classifierResult, datingLabels[i])) #括号内(函数算出的结果,标签实际结果)
            if (classifierResult != datingLabels[i]): errorCount += 1.0    #如果学习结果!= 实际结果,错误+1
        print ("the total error rate is: %f" % (errorCount/float(numTestVecs))) #错误比率=错误数/总测试数
        print (errorCount) #输出错误数
    
    #面向个人的函数
    def classifyPerson():
        resultList = ['一点也不喜欢','有一点点啦', '非常喜欢']
        percentTats = float(input("玩电子游戏的时间百分比?"))
        ffMiles = float(input("每年获得的飞行常客里程?"))
        iceCream = float(input("每年消耗的冰淇淋升数?"))
        datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
        normMat, ranges, minVals = autoNorm(datingDataMat)
        inArr = array([ffMiles, percentTats, iceCream])
        classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
        print ("你可能喜欢这个人: ",resultList[classifierResult - 1])
    
    if __name__=='__main__':
        classifyPerson()
        # matss,labelss=file2matrix('datingTestSet.txt')
        # print(matss,labelss)
        #datingClassTest()
    
        # datingDataMat, datingLabels = file2matrix('datingTestSet.txt')
        # normMat, ranges, minVals = autoNorm(datingDataMat)
    
    #     #groups,labels=createDataSet()
    #     #print(classify0([1,0], groups, labels, 2))
    #
    #     a,b=file2matrix('datingTestSet.txt')
    #     print(a)
    #     print(b)

    运行:

    runfile('C:/Users/Administrator/Desktop/机学-pdf/机器学习实战/knn.py', wdir='C:/Users/Administrator/Desktop/机学-pdf/机器学习实战')
    玩电子游戏的时间百分比?>? 50
    每年获得的飞行常客里程?>? 90000
    每年消耗的冰淇淋升数?>? 800
    你可能喜欢这个人:  非常喜欢

    目录内容:

  • 相关阅读:
    centos7 mongodb3.4 安装
    centos7 开放端口号
    Junit4测试Spring
    selenium浏览器内核监测处理
    mitmproxy(TLS错误)
    爬虫计算两张验证图片的距离(情况一)
    git的git bash使用
    算法
    RBAC权限管理设计
    beego框架返回json数据
  • 原文地址:https://www.cnblogs.com/chenxi188/p/11661980.html
Copyright © 2011-2022 走看看