Time Limit: 500MS | Memory Limit: 32768KB | 64bit IO Format: %lld & %llu |
Description
Dr. Mob has just discovered a Deathly Bacteria. He named it RC-01. RC-01 has a very strange reproduction system. RC-01 lives exactly x days. Now RC-01 produces exactly p new deadly Bacteria where x = bp (where b, p are integers). More generally, x is a perfect pth power. Given the lifetime x of a mother RC-01 you are to determine the maximum number of new RC-01 which can be produced by the mother RC-01.
Input
Input starts with an integer T (≤ 50), denoting the number of test cases.
Each case starts with a line containing an integer x. You can assume that x will have magnitude at least 2 and be within the range of a 32 bit signed integer.
Output
For each case, print the case number and the largest integer p such that x is a perfect pth power.
Sample Input
3
17
1073741824
25
Sample Output
Case 1: 1
Case 2: 30
Case 3: 2
Source
/** 题意: n = a ^p,p最大是多少 做法:质因数分解,p = gcd(e1,e1.....en);如果n为负数,质因子不能为偶数; **/ #include <iostream> #include <cmath> #include <stdio.h> #include <string.h> #include <algorithm> #include <queue> #define pi acos(-1) #define maxn 1000100 using namespace std; int tot = 0; long long phi[maxn/10]; bool num[maxn]; int a[1100]; int b[1100]; long long n; int res = 0; int gcd(int a,int b) { if(b == 0) return a; else return gcd(b,a%b); } void getprime() { tot = 0; for(long long i=2; i<maxn; i++) { if(!num[i]) { phi[tot++] = i; for(long long j=i*i; j<=maxn; j+=i) { num[j] = true; } } } } void solve() { res = 0; memset(a,0,sizeof(a)); memset(b,0,sizeof(b)); for(int i=0; phi[i]*phi[i] <= n; i++) { if(n%phi[i] == 0) { a[res] = n; while(n%phi[i] == 0) { b[res] ++; n /= phi[i]; } res++; } } if(n != 1) { a[res] = n; b[res++] = 1; } } int main() { // freopen("in.txt","r",stdin); int T; getprime(); scanf("%d",&T); int Case = 1; while(T--) { bool flag = true; scanf("%lld",&n); if(n < 0) n = -n,flag = false; solve(); int t = b[0]; if(!flag) { if(t %2 == 0) { while(t %2 == 0) t/=2; } for(int i=0; i<res; i++) { if(b[i] %2 == 0) { while(b[i] % 2 == 0) { b[i] /=2; } } t = gcd(t,b[i]); } } else { for(int i=0; i<res; i++) { t = gcd(t,b[i]); } } printf("Case %d: %d ",Case++,t); } return 0; }