zoukankan      html  css  js  c++  java
  • HDU-2487

    Ugly Windows

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1474    Accepted Submission(s): 588


    Problem Description
    Sheryl works for a software company in the country of Brada. Her job is to develop a Windows operating system. People in Brada are incredibly conservative. They even never use graphical monitors! So Sheryl’s operating system has to run in text mode and windows in that system are formed by characters. Sheryl decides that every window has an ID which is a capital English letter (‘A’ to ‘Z’). Because every window had a unique ID, there can’t be more than 26 windows at the same time. And as you know, all windows are rectangular.

    On the screen of that ugly Windows system, a window’s frame is formed by its ID letters. Fig-1 shows that there is only one window on the screen, and that window’s ID is ‘A’. Windows may overlap. Fig-2 shows the situation that window B is on the top of window A. And Fig-3 gives a more complicated overlapping. Of course, if some parts of a window are covered by other windows, you can’t see those parts on the screen. 

    .........................
    ....AAAAAAAAAAAAA........
    ....A...........A........
    ....A...........A........
    ....A...........A........
    ....AAAAAAAAAAAAA........
    ......................... 

    Fig-1

    .........................
    ....AAAAAAAAAAAAA........
    ....A...........A........
    ....A.......BBBBBBBBBB...
    ....A.......B........B...
    ....AAAAAAAAB........B...
    ............BBBBBBBBBB...
    ......................... 

    Fig-2







    ..........................
    ....AAAAAAAAAAAAA.........
    ....A...........A.........
    ....A.......BBBBBBBBBB....
    ....A.......B........BCCC.
    ....AAAAAAAAB........B..C.
    .......C....BBBBBBBBBB..C.
    .......CCCCCCCCCCCCCCCCCC. 
    .......................... 

    Fig-3

    If a window has no parts covered by other windows, we call it a “top window” (The frame is also considered as a part of a window). Usually, the top windows are the windows that interact with user most frequently. Assigning top windows more CPU time and higher priority will result in better user experiences. Given the screen presented as Figs above, can you tell Sheryl which windows are top windows?
     
    Input
    The input contains several test cases.

    Each test case begins with two integers, n and m (1 <= n, m <= 100), indicating that the screen has n lines, and each line consists of m characters.

    The following n lines describe the whole screen you see. Each line contains m characters. For characters which are not on any window frame, we just replace them with ‘.’ . 

    The input ends with a line of two zeros.

    It is guaranteed that:

    1) There is at least one window on the screen.
    2) Any window’s frame is at least 3 characters wide and 3 characters high.
    3) No part of any window is outside the screen.

     
    Output
    For each test case, output the IDs of all top windows in a line without blanks and in alphabet order.
     
    Sample Input

    9 26
    ..........................
    ....AAAAAAAAAAAAA.........
    ....A...........A.........
    ....A.......BBBBBBBBBB....
    ....A.......B........BCCC.
    ....AAAAAAAAB........B..C.
    .......C....BBBBBBBBBB..C.
    .......CCCCCCCCCCCCCCCCCC.
    ..........................
    7 25
    .........................
    ....DDDDDDDDDDDDD........
    ....D...........D........
    ....D...........D........
    ....D...........D..AAA...
    ....DDDDDDDDDDDDD..A.A...
    ...................AAA...
    0 0

     
    Sample Output
    B
    AD
     
    Source
     
    Recommend
    gaojie
    /**
        题意:给一个图,然后判断是哪一个图在上边,并且该框是>=3*3
        做法:模拟
    **/
    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <cmath>
    #include <algorithm>
    #include <queue>
    #define maxn 110
    using namespace std;
    int vis[maxn][maxn];
    int dx[4] = {0,0,-1,1};
    int dy[4] = {1,-1,0,0};
    char ch[maxn][maxn];
    int alp[30];
    struct Node
    {
        int x;
        int y;
    } node[maxn];
    struct NN
    {
        int x[5];
        int y[5];
        char c[10];
    } no[30];
    int n,m;
    int check(int x,int y)
    {
        if(x >=0 && x < n && y >= 0 && y < m && vis[x][y] == 0) return 1;
        return 0;
    }
    int bfs(int x,int y)
    {
        queue<Node>que;
        Node tmp,now;
        vis[x][y] = 1;
        tmp.x = x;
        tmp.y = y;
        char c = ch[x][y];
        que.push(tmp);
        int sum = 1;
        while(!que.empty())
        {
            now = que.front();
            que.pop();
            for(int i=0; i<4; i++)
            {
                tmp.x = now.x + dx[i];
                tmp.y = now.y + dy[i];
                if(check(tmp.x,tmp.y) && ch[tmp.x][tmp.y] == c)
                {
                    vis[tmp.x][tmp.y] = 1;
                    que.push(tmp);
                    sum++;
                }
            }
        }
        return sum;
    }
    int solve()
    {
        for(int i=0; i<n; i++)
        {
            for(int j=0; j<m; j++)
            {
                int num1 = 0;
                int num2 = 0;
                int num = 0;
                int res = 0;
                if(ch[i][j] != '.' && vis[i][j] == 0)
                {
                    char c = ch[i][j];
                    for(int ii = i; ii<n; ii++)
                    {
                        if(ch[ii][j] == c) num1++;
                        else break;
                    }
                    for(int jj= j; jj<m; jj++)
                    {
                        if(ch[i][jj] == c) num2++;
                        else break;
                    }
                    num = bfs(i,j);
                    if(num == 2*( num1 + num2 -2) && num1 >=3 && num2 >= 3 && num >= 8)
                    {
                        int tt = ch[i][j] - 'A';
                        alp[tt] = 1;
                        no[tt].x[0] = i;
                        no[tt].x[1] = i+ num1 -1;
                        no[tt].y[0] = j;
                        no[tt].y[1] = j + num2 -1;
                    }
                }
            }
        }
        for(int i=0; i<26; i++)
        {
            if(alp[i] == 1)
                for(int j=0; j<26; j++)
                {
                    if(alp[j] == 1 && no[i].x[0] < no[j].x[0] && no[i].x[1] > no[j].x[1] && no[i].y[0]< no[j].y[0] && no[i].y[1] > no[j].y[1])
                    {
                        alp[i] = 0;
                       // break;
                    }
                }
        }
        for(int i=0; i<26; i++)
        {
            if(alp[i])
            {
                printf("%c",i+'A');
            }
        }
        printf("
    ");
    }
    int main()
    {
      //  freopen("in.txt","r",stdin);
        while(~scanf("%d %d",&n,&m))
        {
            if(n == 0 && m == 0) break;
            for(int i=0; i<n; i++)
            {
    
                scanf("%s",ch[i]);
    
            }
            memset(vis,0,sizeof(vis));
            memset(alp,0,sizeof(alp));
            solve();
        }
    }
  • 相关阅读:
    51nod 1494 选举拉票 | 线段树
    51nod 1295 XOR key | 可持久化Trie树
    Codeforces 438D (今日gg模拟第二题) | 线段树 考察时间复杂度的计算 -_-|||
    51nod 1563 坐标轴上的最大团(今日gg模拟第一题) | 线段覆盖 贪心 思维题
    良心的可持久化线段树教程
    51nod 1593 公园晨跑 | ST表(线段树?)思维题
    51nod 1595 回文度 | 马拉车Manacher DP
    51nod 1522 上下序列
    胡小兔的OI日志3 完结版
    51nod 1510 最小化序列 | DP 贪心
  • 原文地址:https://www.cnblogs.com/chenyang920/p/4680939.html
Copyright © 2011-2022 走看看