zoukankan      html  css  js  c++  java
  • Bellman update中Value Iteration收敛证明

    Preface

    感觉比赛完了后有段空隙期,没事抬头看看天空,低头翻翻paper.

    Text

    问题在这本textbook654页上的(17.7),是关于不动点的收敛问题。收敛性问题一向引人入胜,但刚看到这段的时候,还是没有从mess中理出来,还好后面Exercise 17.6有guidance。把(b)问做了之后,发现(a)并没有那么trivial,于是记一下。

    (b)

    从guidance的思路出发,剩下的用一个如下的式子进行证明:

    [egin{equation} mathop{max}_{ain A(s)} left|sum_{s'}P(s'|s,a)left( U_i(s')-U'_i(s') ight) ight| leq mathop{max}_{s'} left| U_i(s')-U'_i(s') ight| label{eq:17.6.b} end{equation} ]

    利用(P)的概率属性。
    以下是关于(a)的证明。

    (a)

    这是这篇想要说的主要内容,复述一下要证明的问题:
    for any functions (f) and (g)

    [left|mathop{max}_{a}f(a)-mathop{max}_{a}g(a) ight|leqmathop{max}_{a}left|f(a)-g(a) ight| ]

    感觉离上次看见Terence Tao的字眼已经很久了,思维启动起来有些慢,一开始还想从连续性方面考虑下(-_-||),后面发觉应该归为一般类的问题来考虑。
    先做几个定义:

    [egin{eqnarray} f_a & :=& max f onumber\ g_x &:=& max g onumber\ h(y) &:=& left(f(y)-g(y) ight)^2-(f_a-g_x)^2 onumber end{eqnarray} ]

    那么问题就转为证明:

    [egin{equation} exists y in D, ~ h(y) geq 0label{eq:proof1} end{equation} ]

    如果只考虑是个一般类问题的话,能着手的只有两个已知点,还好后面发现能work:

    [egin{eqnarray} h(a) &=& left( 2f_a -g(a) -g_x ight)left(g_x-g(a) ight)label{eq:h_a}\ h(x) &=& left(2g_x-f(x)-f_a ight)left(f_a-f(x) ight)label{eq:h_x} end{eqnarray} ]

    然后讨论(f_a,~g_x)的大小关系,发现总会存在(h(a)~OR~h(x)ge 0)的情况。

    Note

    这种更新方式很concise(也很nice),容易使人联想到EM的策略,但EM却和不动点扯不上什么关系(真是遗憾)。
    另外,(b)的严格证明还没有进行,上面只是一些思路。

  • 相关阅读:
    指向指针的指针
    判断是否遵守某个协议
    oc继承,实现,分类
    oc中没有空指针错误
    oc方法
    指针
    Array.diff
    ATM机允许4位或6位密码,而密码只能包含4位或6位数字。 如果函数传递了一个有效的PIN字符串,返回true,否则返回false。
    替换字符串中的字符为“(” 或“)”
    python 异常处理
  • 原文地址:https://www.cnblogs.com/chenyliang/p/8021889.html
Copyright © 2011-2022 走看看