zoukankan      html  css  js  c++  java
  • 流速梯度

    import eofs
    from eofs.standard import Eof
    import pandas as pd
    import numpy as np
    import glob
    import datetime
    from matplotlib import pyplot as plt
    import copy
    import re
    import time
    from pylab import *
    import matplotlib.dates as mdate
    import matplotlib.patches as patches
    import matplotlib.ticker as ticker
    import xarray as ax
    import copy
    import geopandas as gpd
    from pykrige.ok import OrdinaryKriging
    from pykrige.kriging_tools import write_asc_grid
    import pykrige.kriging_tools as kt
    from matplotlib.colors import LinearSegmentedColormap
    from matplotlib.patches import Path, PathPatch
    from shapely.geometry import LineString
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
    from sklearn.linear_model import LinearRegression

    tick1_spacing = 0.1
    tick2_spacing = 0.1

    so1 = [1,1,0]

    font1 = {'family': 'Times New Roman',
    'weight': 'normal',
    'size': 15,
    }

    d1 = ['Unnamed: 0','hb', 'h', 'value', 'date']
    s = np.full([1, 5], np.nan)
    s1 = pd.DataFrame(s, columns=d1)
    op = ['Unnamed: 0']

    v1 = []
    v2 = []
    dfg = pd.read_csv('./1_sudu.csv')
    df = pd.read_csv(r'./6月xq表层1.csv')
    z1 = df['黏土']
    z2 = df['粉砂']
    z3 = df['砂']

    bds = []
    ads = dfg.groupby('date')
    tt =list(ads)
    adt = []

    for i in range(len(tt)):
    tt1 = tt[i][1]
    adt.append(tt[i][0])
    st = s1.append(tt1, ignore_index=True)
    st1 = st.append(s1, ignore_index=True)
    st1.drop(op, inplace=True, axis=1)
    len_1 = len(st1['hb'])
    st1.iat[0, 0] = 0
    st1.iat[0, 1] = st1.iat[1, 1]
    st1.iat[0, 2] = st1.iat[1, 2] * 1.02
    st1.iat[0, 3] = st1.iat[1, 3]

    st1.iat[-1, 0] = 1
    st1.iat[-1, 1] = st1.iat[-2, 1]
    st1.iat[-1, 2] = st1.iat[-2, 2] * 0.795
    st1.iat[-1, 3] = st1.iat[-2, 3]
    v_1 = abs((st1.iat[1, 2] - st1.iat[-2, 2]))/ ( st1.iat[1, 1])

    # print(v_1)
    v1.append(v_1)
    v_2 = st1.iat[-2, 2]
    v2.append(v_2)

    vv1 = pd.Series(np.array(v1))
    vv2 = pd.Series(np.array(v2))
    dc = pd.DataFrame(vv2,columns=['tidu1'])
    dc['date'] = pd.Series(adt)
    dc1 = copy.deepcopy(dc)
    dc1.to_csv('./dicengliusu.csv')
    dh = pd.DataFrame(vv1,columns=['tidu1'])
    # dh['niantu'] = z1
    # dh['fensha'] = z2
    # dh['sha'] = z3
    dh['date'] = pd.Series(adt)
    print(dh)
    dh1 = copy.deepcopy(dh)
    dh1.to_csv('./tiudu_bdnihe1.csv')











































    # if len(st1) <= 3:
    # # print(st1)
    # v_1 = abs((st1.iat[-2, 2] - st1.iat[-1, 2])) / (0.2 * st1.iat[-1, 1])
    # v1.append(v_1)
    # else:
    #
    # if 3<len(st1) <= 7:
    # # print(st1)
    # v_1 = abs((st1.iat[-3, 2] - st1.iat[-2, 2])) / (0.2 * st1.iat[-1, 1])
    # v1.append(v_1)
    # elif 7< len(st1)<=10:
    # # print(st1)
    # for x1 in range(len(st1['hb'])):
    # at = st1.iat[x1, 0]
    # h = st1.iat[-1, 1]
    # if at ==4.41:
    # id_1 = st1.loc[st1['hb'] == at]
    # # print(id_1)
    # id_2 = st1.loc[st1['hb'] == 1]
    # # print(id_1)
    # # print(id_2)
    # v_1 = (abs(id_1.iat[0, 2]-id_2.iat[0, 2]))/(0.2*id_2.iat[-1, 1])
    # # print(v_1)
    # v1.append(v_1)
    # elif 10 < len(st1) <= 18:
    # # print(st1)
    # for x1 in range(len(st1['hb'])):
    # at = st1.iat[x1, 0]
    # h = st1.iat[-1, 1]
    # if 0.735 * h < at < 0.789 * h:
    # id_1 = st1.loc[st1['hb'] == at]
    # # print(id_1)
    # id_2 = st1.loc[st1['hb'] == 1]
    # v_1 = (abs(id_1.iat[0, 2] - id_2.iat[0, 2])) / (0.2 * id_2.iat[-1, 1])
    # # print(v_1)
    # v1.append(v_1)
    # elif 18 < len(st1) <= 22:
    # # print(st1)
    # for x1 in range(len(st1['hb'])):
    # at = st1.iat[x1, 0]
    # h = st1.iat[-1, 1]
    # if 0.8 * h < at < 0.84 * h:
    # id_1 = st1.loc[st1['hb'] == at]
    # # print(id_1)
    # id_2 = st1.loc[st1['hb'] == 1]
    # v_1 = (abs(id_1.iat[0, 2] - id_2.iat[0, 2])) / (0.2 * id_2.iat[-1, 1])
    # v1.append(v_1)
    # elif len(st1)>22:
    # for x1 in range(len(st1['hb'])):
    # at = st1.iat[x1, 0]
    # h = st1.iat[-1, 1]
    # if 0.8 * h < at < 0.835 * h:
    # id_1 = st1.loc[st1['hb'] == at]
    # # print(id_1)
    # id_2 = st1.loc[st1['hb'] == 1]
    # v_1 = (abs(id_1.iat[0, 2] - id_2.iat[0, 2])) / (0.2 * id_2.iat[-1, 1])
    # v1.append(v_1)



    # print(v1)
    # vv1 = pd.Series(np.array(v1))
    # # print(adt)
    # print(vv1)
    # dh = pd.DataFrame(vv1,columns=['tidu1'])
    # dh['niantu'] = z1
    # dh['fensha'] = z2
    # dh['sha'] = z3
    # dh['date'] = pd.Series(adt)
    # print(dh)
    # dh1 = copy.deepcopy(dh)
    # dh1.to_csv('./tiudu_nihe.csv')































    # print(st1)
    # if len(st1)<=3:
    # v_1 =(st1.iat[-2, 2]-st1.iat[-1, 2])/(0.2*st1.iat[-1, 1])
    # v1.append(v_1)
    # else:
    # v_1 = abs(st1.iat[-3, 2] - st1.iat[-2, 2]) / (0.2 * st1.iat[-1, 1])
    # v1.append(v_1)
    # vv1 = pd.Series(np.array(v1))
    #
    # dh = pd.DataFrame(vv1,columns=['tidu1'])
    # dh['niantu'] = z1
    # dh['fensha'] = z2
    # dh['sha'] = z3
    #
    # dh1 = copy.deepcopy(dh)
    # # dh1.to_csv('./tiud_nihe.csv')
    # x = dh1[['tidu1']]
    # y1 = dh1[['niantu']]
    # # print(x)
    # # print(y1)
    #
    # lm1 = LinearRegression()
    # ft1 = lm1.fit(x,y1)
    # ct1 = ft1.score(x,y1)
    # dy1 =ct1**0.5
    # print(dy1)


  • 相关阅读:
    Dynamic 365 中创建编码规则
    程序员和产品经理之间的恩怨情仇
    Scrum已经俘获中国开发者的心? ——从《2017年开发者调查报告》看真相!
    不懂营销的产品经理不是好的产品经理
    关于程序猿之间丧心病狂的鄙视链——编辑器篇
    国内五款好用的开源建站系统
    程序员听到bug后的N种反应,太形象了
    功能至上!国内外最实用的协作类软件盘点
    关于程序员之间丧心病狂的鄙视链——编程语言篇
    结对编程体会
  • 原文地址:https://www.cnblogs.com/chenyun-delft3d/p/14688187.html
Copyright © 2011-2022 走看看