zoukankan      html  css  js  c++  java
  • 流速梯度

    import eofs
    from eofs.standard import Eof
    import pandas as pd
    import numpy as np
    import glob
    import datetime
    from matplotlib import pyplot as plt
    import copy
    import re
    import time
    from pylab import *
    import matplotlib.dates as mdate
    import matplotlib.patches as patches
    import matplotlib.ticker as ticker
    import xarray as ax
    import copy
    import geopandas as gpd
    from pykrige.ok import OrdinaryKriging
    from pykrige.kriging_tools import write_asc_grid
    import pykrige.kriging_tools as kt
    from matplotlib.colors import LinearSegmentedColormap
    from matplotlib.patches import Path, PathPatch
    from shapely.geometry import LineString
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
    from sklearn.linear_model import LinearRegression

    tick1_spacing = 0.1
    tick2_spacing = 0.1

    so1 = [1,1,0]

    font1 = {'family': 'Times New Roman',
    'weight': 'normal',
    'size': 15,
    }

    d1 = ['Unnamed: 0','hb', 'h', 'value', 'date']
    s = np.full([1, 5], np.nan)
    s1 = pd.DataFrame(s, columns=d1)
    op = ['Unnamed: 0']

    v1 = []
    v2 = []
    dfg = pd.read_csv('./1_sudu.csv')
    df = pd.read_csv(r'./6月xq表层1.csv')
    z1 = df['黏土']
    z2 = df['粉砂']
    z3 = df['砂']

    bds = []
    ads = dfg.groupby('date')
    tt =list(ads)
    adt = []

    for i in range(len(tt)):
    tt1 = tt[i][1]
    adt.append(tt[i][0])
    st = s1.append(tt1, ignore_index=True)
    st1 = st.append(s1, ignore_index=True)
    st1.drop(op, inplace=True, axis=1)
    len_1 = len(st1['hb'])
    st1.iat[0, 0] = 0
    st1.iat[0, 1] = st1.iat[1, 1]
    st1.iat[0, 2] = st1.iat[1, 2] * 1.02
    st1.iat[0, 3] = st1.iat[1, 3]

    st1.iat[-1, 0] = 1
    st1.iat[-1, 1] = st1.iat[-2, 1]
    st1.iat[-1, 2] = st1.iat[-2, 2] * 0.795
    st1.iat[-1, 3] = st1.iat[-2, 3]
    v_1 = abs((st1.iat[1, 2] - st1.iat[-2, 2]))/ ( st1.iat[1, 1])

    # print(v_1)
    v1.append(v_1)
    v_2 = st1.iat[-2, 2]
    v2.append(v_2)

    vv1 = pd.Series(np.array(v1))
    vv2 = pd.Series(np.array(v2))
    dc = pd.DataFrame(vv2,columns=['tidu1'])
    dc['date'] = pd.Series(adt)
    dc1 = copy.deepcopy(dc)
    dc1.to_csv('./dicengliusu.csv')
    dh = pd.DataFrame(vv1,columns=['tidu1'])
    # dh['niantu'] = z1
    # dh['fensha'] = z2
    # dh['sha'] = z3
    dh['date'] = pd.Series(adt)
    print(dh)
    dh1 = copy.deepcopy(dh)
    dh1.to_csv('./tiudu_bdnihe1.csv')











































    # if len(st1) <= 3:
    # # print(st1)
    # v_1 = abs((st1.iat[-2, 2] - st1.iat[-1, 2])) / (0.2 * st1.iat[-1, 1])
    # v1.append(v_1)
    # else:
    #
    # if 3<len(st1) <= 7:
    # # print(st1)
    # v_1 = abs((st1.iat[-3, 2] - st1.iat[-2, 2])) / (0.2 * st1.iat[-1, 1])
    # v1.append(v_1)
    # elif 7< len(st1)<=10:
    # # print(st1)
    # for x1 in range(len(st1['hb'])):
    # at = st1.iat[x1, 0]
    # h = st1.iat[-1, 1]
    # if at ==4.41:
    # id_1 = st1.loc[st1['hb'] == at]
    # # print(id_1)
    # id_2 = st1.loc[st1['hb'] == 1]
    # # print(id_1)
    # # print(id_2)
    # v_1 = (abs(id_1.iat[0, 2]-id_2.iat[0, 2]))/(0.2*id_2.iat[-1, 1])
    # # print(v_1)
    # v1.append(v_1)
    # elif 10 < len(st1) <= 18:
    # # print(st1)
    # for x1 in range(len(st1['hb'])):
    # at = st1.iat[x1, 0]
    # h = st1.iat[-1, 1]
    # if 0.735 * h < at < 0.789 * h:
    # id_1 = st1.loc[st1['hb'] == at]
    # # print(id_1)
    # id_2 = st1.loc[st1['hb'] == 1]
    # v_1 = (abs(id_1.iat[0, 2] - id_2.iat[0, 2])) / (0.2 * id_2.iat[-1, 1])
    # # print(v_1)
    # v1.append(v_1)
    # elif 18 < len(st1) <= 22:
    # # print(st1)
    # for x1 in range(len(st1['hb'])):
    # at = st1.iat[x1, 0]
    # h = st1.iat[-1, 1]
    # if 0.8 * h < at < 0.84 * h:
    # id_1 = st1.loc[st1['hb'] == at]
    # # print(id_1)
    # id_2 = st1.loc[st1['hb'] == 1]
    # v_1 = (abs(id_1.iat[0, 2] - id_2.iat[0, 2])) / (0.2 * id_2.iat[-1, 1])
    # v1.append(v_1)
    # elif len(st1)>22:
    # for x1 in range(len(st1['hb'])):
    # at = st1.iat[x1, 0]
    # h = st1.iat[-1, 1]
    # if 0.8 * h < at < 0.835 * h:
    # id_1 = st1.loc[st1['hb'] == at]
    # # print(id_1)
    # id_2 = st1.loc[st1['hb'] == 1]
    # v_1 = (abs(id_1.iat[0, 2] - id_2.iat[0, 2])) / (0.2 * id_2.iat[-1, 1])
    # v1.append(v_1)



    # print(v1)
    # vv1 = pd.Series(np.array(v1))
    # # print(adt)
    # print(vv1)
    # dh = pd.DataFrame(vv1,columns=['tidu1'])
    # dh['niantu'] = z1
    # dh['fensha'] = z2
    # dh['sha'] = z3
    # dh['date'] = pd.Series(adt)
    # print(dh)
    # dh1 = copy.deepcopy(dh)
    # dh1.to_csv('./tiudu_nihe.csv')































    # print(st1)
    # if len(st1)<=3:
    # v_1 =(st1.iat[-2, 2]-st1.iat[-1, 2])/(0.2*st1.iat[-1, 1])
    # v1.append(v_1)
    # else:
    # v_1 = abs(st1.iat[-3, 2] - st1.iat[-2, 2]) / (0.2 * st1.iat[-1, 1])
    # v1.append(v_1)
    # vv1 = pd.Series(np.array(v1))
    #
    # dh = pd.DataFrame(vv1,columns=['tidu1'])
    # dh['niantu'] = z1
    # dh['fensha'] = z2
    # dh['sha'] = z3
    #
    # dh1 = copy.deepcopy(dh)
    # # dh1.to_csv('./tiud_nihe.csv')
    # x = dh1[['tidu1']]
    # y1 = dh1[['niantu']]
    # # print(x)
    # # print(y1)
    #
    # lm1 = LinearRegression()
    # ft1 = lm1.fit(x,y1)
    # ct1 = ft1.score(x,y1)
    # dy1 =ct1**0.5
    # print(dy1)


  • 相关阅读:
    超级好用的装机神器——Ventoy
    CentOS7.4安装Nvidia Tesla T4驱动
    ESXI常用命令
    阿里云|腾讯云MySQL备份文件一键恢复工具
    在甲方做三年安全的碎碎念
    golang操作docker
    Nginx Module扩展模块实现
    炒冷饭之ThinkPHP3.2.X RCE漏洞分析
    Windows:sysprep.exe工具:审核模式 VS OOBE模式(工厂模式 VS 用户模式)
    高校毕业生人数增长图
  • 原文地址:https://www.cnblogs.com/chenyun-delft3d/p/14688187.html
Copyright © 2011-2022 走看看