zoukankan      html  css  js  c++  java
  • 流速梯度

    import eofs
    from eofs.standard import Eof
    import pandas as pd
    import numpy as np
    import glob
    import datetime
    from matplotlib import pyplot as plt
    import copy
    import re
    import time
    from pylab import *
    import matplotlib.dates as mdate
    import matplotlib.patches as patches
    import matplotlib.ticker as ticker
    import xarray as ax
    import copy
    import geopandas as gpd
    from pykrige.ok import OrdinaryKriging
    from pykrige.kriging_tools import write_asc_grid
    import pykrige.kriging_tools as kt
    from matplotlib.colors import LinearSegmentedColormap
    from matplotlib.patches import Path, PathPatch
    from shapely.geometry import LineString
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
    from sklearn.linear_model import LinearRegression

    tick1_spacing = 0.1
    tick2_spacing = 0.1

    so1 = [1,1,0]

    font1 = {'family': 'Times New Roman',
    'weight': 'normal',
    'size': 15,
    }

    d1 = ['Unnamed: 0','hb', 'h', 'value', 'date']
    s = np.full([1, 5], np.nan)
    s1 = pd.DataFrame(s, columns=d1)
    op = ['Unnamed: 0']

    v1 = []
    v2 = []
    dfg = pd.read_csv('./1_sudu.csv')
    df = pd.read_csv(r'./6月xq表层1.csv')
    z1 = df['黏土']
    z2 = df['粉砂']
    z3 = df['砂']

    bds = []
    ads = dfg.groupby('date')
    tt =list(ads)
    adt = []

    for i in range(len(tt)):
    tt1 = tt[i][1]
    adt.append(tt[i][0])
    st = s1.append(tt1, ignore_index=True)
    st1 = st.append(s1, ignore_index=True)
    st1.drop(op, inplace=True, axis=1)
    len_1 = len(st1['hb'])
    st1.iat[0, 0] = 0
    st1.iat[0, 1] = st1.iat[1, 1]
    st1.iat[0, 2] = st1.iat[1, 2] * 1.02
    st1.iat[0, 3] = st1.iat[1, 3]

    st1.iat[-1, 0] = 1
    st1.iat[-1, 1] = st1.iat[-2, 1]
    st1.iat[-1, 2] = st1.iat[-2, 2] * 0.795
    st1.iat[-1, 3] = st1.iat[-2, 3]
    v_1 = abs((st1.iat[1, 2] - st1.iat[-2, 2]))/ ( st1.iat[1, 1])

    # print(v_1)
    v1.append(v_1)
    v_2 = st1.iat[-2, 2]
    v2.append(v_2)

    vv1 = pd.Series(np.array(v1))
    vv2 = pd.Series(np.array(v2))
    dc = pd.DataFrame(vv2,columns=['tidu1'])
    dc['date'] = pd.Series(adt)
    dc1 = copy.deepcopy(dc)
    dc1.to_csv('./dicengliusu.csv')
    dh = pd.DataFrame(vv1,columns=['tidu1'])
    # dh['niantu'] = z1
    # dh['fensha'] = z2
    # dh['sha'] = z3
    dh['date'] = pd.Series(adt)
    print(dh)
    dh1 = copy.deepcopy(dh)
    dh1.to_csv('./tiudu_bdnihe1.csv')











































    # if len(st1) <= 3:
    # # print(st1)
    # v_1 = abs((st1.iat[-2, 2] - st1.iat[-1, 2])) / (0.2 * st1.iat[-1, 1])
    # v1.append(v_1)
    # else:
    #
    # if 3<len(st1) <= 7:
    # # print(st1)
    # v_1 = abs((st1.iat[-3, 2] - st1.iat[-2, 2])) / (0.2 * st1.iat[-1, 1])
    # v1.append(v_1)
    # elif 7< len(st1)<=10:
    # # print(st1)
    # for x1 in range(len(st1['hb'])):
    # at = st1.iat[x1, 0]
    # h = st1.iat[-1, 1]
    # if at ==4.41:
    # id_1 = st1.loc[st1['hb'] == at]
    # # print(id_1)
    # id_2 = st1.loc[st1['hb'] == 1]
    # # print(id_1)
    # # print(id_2)
    # v_1 = (abs(id_1.iat[0, 2]-id_2.iat[0, 2]))/(0.2*id_2.iat[-1, 1])
    # # print(v_1)
    # v1.append(v_1)
    # elif 10 < len(st1) <= 18:
    # # print(st1)
    # for x1 in range(len(st1['hb'])):
    # at = st1.iat[x1, 0]
    # h = st1.iat[-1, 1]
    # if 0.735 * h < at < 0.789 * h:
    # id_1 = st1.loc[st1['hb'] == at]
    # # print(id_1)
    # id_2 = st1.loc[st1['hb'] == 1]
    # v_1 = (abs(id_1.iat[0, 2] - id_2.iat[0, 2])) / (0.2 * id_2.iat[-1, 1])
    # # print(v_1)
    # v1.append(v_1)
    # elif 18 < len(st1) <= 22:
    # # print(st1)
    # for x1 in range(len(st1['hb'])):
    # at = st1.iat[x1, 0]
    # h = st1.iat[-1, 1]
    # if 0.8 * h < at < 0.84 * h:
    # id_1 = st1.loc[st1['hb'] == at]
    # # print(id_1)
    # id_2 = st1.loc[st1['hb'] == 1]
    # v_1 = (abs(id_1.iat[0, 2] - id_2.iat[0, 2])) / (0.2 * id_2.iat[-1, 1])
    # v1.append(v_1)
    # elif len(st1)>22:
    # for x1 in range(len(st1['hb'])):
    # at = st1.iat[x1, 0]
    # h = st1.iat[-1, 1]
    # if 0.8 * h < at < 0.835 * h:
    # id_1 = st1.loc[st1['hb'] == at]
    # # print(id_1)
    # id_2 = st1.loc[st1['hb'] == 1]
    # v_1 = (abs(id_1.iat[0, 2] - id_2.iat[0, 2])) / (0.2 * id_2.iat[-1, 1])
    # v1.append(v_1)



    # print(v1)
    # vv1 = pd.Series(np.array(v1))
    # # print(adt)
    # print(vv1)
    # dh = pd.DataFrame(vv1,columns=['tidu1'])
    # dh['niantu'] = z1
    # dh['fensha'] = z2
    # dh['sha'] = z3
    # dh['date'] = pd.Series(adt)
    # print(dh)
    # dh1 = copy.deepcopy(dh)
    # dh1.to_csv('./tiudu_nihe.csv')































    # print(st1)
    # if len(st1)<=3:
    # v_1 =(st1.iat[-2, 2]-st1.iat[-1, 2])/(0.2*st1.iat[-1, 1])
    # v1.append(v_1)
    # else:
    # v_1 = abs(st1.iat[-3, 2] - st1.iat[-2, 2]) / (0.2 * st1.iat[-1, 1])
    # v1.append(v_1)
    # vv1 = pd.Series(np.array(v1))
    #
    # dh = pd.DataFrame(vv1,columns=['tidu1'])
    # dh['niantu'] = z1
    # dh['fensha'] = z2
    # dh['sha'] = z3
    #
    # dh1 = copy.deepcopy(dh)
    # # dh1.to_csv('./tiud_nihe.csv')
    # x = dh1[['tidu1']]
    # y1 = dh1[['niantu']]
    # # print(x)
    # # print(y1)
    #
    # lm1 = LinearRegression()
    # ft1 = lm1.fit(x,y1)
    # ct1 = ft1.score(x,y1)
    # dy1 =ct1**0.5
    # print(dy1)


  • 相关阅读:
    docker的网络服务
    想真正了解JAVA设计模式看着一篇就够了。 详解+代码实例
    再问你Java内存模型的时候别再给我讲堆栈方法区
    ssh爆破脚本
    ecshop3.0.0注入
    zabbix 安装配置以及漏洞检测脚本
    代理爬取
    selenium2使用记录
    初级AD域渗透系列
    用ftplib爆破FTP口令
  • 原文地址:https://www.cnblogs.com/chenyun-delft3d/p/14688187.html
Copyright © 2011-2022 走看看