zoukankan      html  css  js  c++  java
  • 流速梯度

    import eofs
    from eofs.standard import Eof
    import pandas as pd
    import numpy as np
    import glob
    import datetime
    from matplotlib import pyplot as plt
    import copy
    import re
    import time
    from pylab import *
    import matplotlib.dates as mdate
    import matplotlib.patches as patches
    import matplotlib.ticker as ticker
    import xarray as ax
    import copy
    import geopandas as gpd
    from pykrige.ok import OrdinaryKriging
    from pykrige.kriging_tools import write_asc_grid
    import pykrige.kriging_tools as kt
    from matplotlib.colors import LinearSegmentedColormap
    from matplotlib.patches import Path, PathPatch
    from shapely.geometry import LineString
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
    from sklearn.linear_model import LinearRegression

    tick1_spacing = 0.1
    tick2_spacing = 0.1

    so1 = [1,1,0]

    font1 = {'family': 'Times New Roman',
    'weight': 'normal',
    'size': 15,
    }

    d1 = ['Unnamed: 0','hb', 'h', 'value', 'date']
    s = np.full([1, 5], np.nan)
    s1 = pd.DataFrame(s, columns=d1)
    op = ['Unnamed: 0']

    v1 = []
    v2 = []
    dfg = pd.read_csv('./1_sudu.csv')
    df = pd.read_csv(r'./6月xq表层1.csv')
    z1 = df['黏土']
    z2 = df['粉砂']
    z3 = df['砂']

    bds = []
    ads = dfg.groupby('date')
    tt =list(ads)
    adt = []

    for i in range(len(tt)):
    tt1 = tt[i][1]
    adt.append(tt[i][0])
    st = s1.append(tt1, ignore_index=True)
    st1 = st.append(s1, ignore_index=True)
    st1.drop(op, inplace=True, axis=1)
    len_1 = len(st1['hb'])
    st1.iat[0, 0] = 0
    st1.iat[0, 1] = st1.iat[1, 1]
    st1.iat[0, 2] = st1.iat[1, 2] * 1.02
    st1.iat[0, 3] = st1.iat[1, 3]

    st1.iat[-1, 0] = 1
    st1.iat[-1, 1] = st1.iat[-2, 1]
    st1.iat[-1, 2] = st1.iat[-2, 2] * 0.795
    st1.iat[-1, 3] = st1.iat[-2, 3]
    v_1 = abs((st1.iat[1, 2] - st1.iat[-2, 2]))/ ( st1.iat[1, 1])

    # print(v_1)
    v1.append(v_1)
    v_2 = st1.iat[-2, 2]
    v2.append(v_2)

    vv1 = pd.Series(np.array(v1))
    vv2 = pd.Series(np.array(v2))
    dc = pd.DataFrame(vv2,columns=['tidu1'])
    dc['date'] = pd.Series(adt)
    dc1 = copy.deepcopy(dc)
    dc1.to_csv('./dicengliusu.csv')
    dh = pd.DataFrame(vv1,columns=['tidu1'])
    # dh['niantu'] = z1
    # dh['fensha'] = z2
    # dh['sha'] = z3
    dh['date'] = pd.Series(adt)
    print(dh)
    dh1 = copy.deepcopy(dh)
    dh1.to_csv('./tiudu_bdnihe1.csv')











































    # if len(st1) <= 3:
    # # print(st1)
    # v_1 = abs((st1.iat[-2, 2] - st1.iat[-1, 2])) / (0.2 * st1.iat[-1, 1])
    # v1.append(v_1)
    # else:
    #
    # if 3<len(st1) <= 7:
    # # print(st1)
    # v_1 = abs((st1.iat[-3, 2] - st1.iat[-2, 2])) / (0.2 * st1.iat[-1, 1])
    # v1.append(v_1)
    # elif 7< len(st1)<=10:
    # # print(st1)
    # for x1 in range(len(st1['hb'])):
    # at = st1.iat[x1, 0]
    # h = st1.iat[-1, 1]
    # if at ==4.41:
    # id_1 = st1.loc[st1['hb'] == at]
    # # print(id_1)
    # id_2 = st1.loc[st1['hb'] == 1]
    # # print(id_1)
    # # print(id_2)
    # v_1 = (abs(id_1.iat[0, 2]-id_2.iat[0, 2]))/(0.2*id_2.iat[-1, 1])
    # # print(v_1)
    # v1.append(v_1)
    # elif 10 < len(st1) <= 18:
    # # print(st1)
    # for x1 in range(len(st1['hb'])):
    # at = st1.iat[x1, 0]
    # h = st1.iat[-1, 1]
    # if 0.735 * h < at < 0.789 * h:
    # id_1 = st1.loc[st1['hb'] == at]
    # # print(id_1)
    # id_2 = st1.loc[st1['hb'] == 1]
    # v_1 = (abs(id_1.iat[0, 2] - id_2.iat[0, 2])) / (0.2 * id_2.iat[-1, 1])
    # # print(v_1)
    # v1.append(v_1)
    # elif 18 < len(st1) <= 22:
    # # print(st1)
    # for x1 in range(len(st1['hb'])):
    # at = st1.iat[x1, 0]
    # h = st1.iat[-1, 1]
    # if 0.8 * h < at < 0.84 * h:
    # id_1 = st1.loc[st1['hb'] == at]
    # # print(id_1)
    # id_2 = st1.loc[st1['hb'] == 1]
    # v_1 = (abs(id_1.iat[0, 2] - id_2.iat[0, 2])) / (0.2 * id_2.iat[-1, 1])
    # v1.append(v_1)
    # elif len(st1)>22:
    # for x1 in range(len(st1['hb'])):
    # at = st1.iat[x1, 0]
    # h = st1.iat[-1, 1]
    # if 0.8 * h < at < 0.835 * h:
    # id_1 = st1.loc[st1['hb'] == at]
    # # print(id_1)
    # id_2 = st1.loc[st1['hb'] == 1]
    # v_1 = (abs(id_1.iat[0, 2] - id_2.iat[0, 2])) / (0.2 * id_2.iat[-1, 1])
    # v1.append(v_1)



    # print(v1)
    # vv1 = pd.Series(np.array(v1))
    # # print(adt)
    # print(vv1)
    # dh = pd.DataFrame(vv1,columns=['tidu1'])
    # dh['niantu'] = z1
    # dh['fensha'] = z2
    # dh['sha'] = z3
    # dh['date'] = pd.Series(adt)
    # print(dh)
    # dh1 = copy.deepcopy(dh)
    # dh1.to_csv('./tiudu_nihe.csv')































    # print(st1)
    # if len(st1)<=3:
    # v_1 =(st1.iat[-2, 2]-st1.iat[-1, 2])/(0.2*st1.iat[-1, 1])
    # v1.append(v_1)
    # else:
    # v_1 = abs(st1.iat[-3, 2] - st1.iat[-2, 2]) / (0.2 * st1.iat[-1, 1])
    # v1.append(v_1)
    # vv1 = pd.Series(np.array(v1))
    #
    # dh = pd.DataFrame(vv1,columns=['tidu1'])
    # dh['niantu'] = z1
    # dh['fensha'] = z2
    # dh['sha'] = z3
    #
    # dh1 = copy.deepcopy(dh)
    # # dh1.to_csv('./tiud_nihe.csv')
    # x = dh1[['tidu1']]
    # y1 = dh1[['niantu']]
    # # print(x)
    # # print(y1)
    #
    # lm1 = LinearRegression()
    # ft1 = lm1.fit(x,y1)
    # ct1 = ft1.score(x,y1)
    # dy1 =ct1**0.5
    # print(dy1)


  • 相关阅读:
    stress工具使用指南和结果分析
    copy.c实现
    sysbench测试阿里云CPU
    sysbench测试阿里云ECS云磁盘的IOPS,吞吐量
    iostat详解
    sysbench_fileio.sh
    rm -f /var/lib/rpm/__db*;rpm --rebuilddb
    HeadFirst 13 (包装器, 过滤器) not Finish
    基于Linux的oracle数据库管理 part5( linux启动关闭 自动启动关闭 oracle )
    基于Linux的oracle数据库管理 part4( shell管理 上 )
  • 原文地址:https://www.cnblogs.com/chenyun-delft3d/p/14688187.html
Copyright © 2011-2022 走看看