zoukankan      html  css  js  c++  java
  • bzoj3905: Square

    Description

    Nothing is more beautiful than square! So, given a grid of cells, each cell being black or white, it is reasonable to evaluate this grid’s beautifulness by the side length of its maximum continuous subsquare which fully consists of white cells.
    Now you’re given an N × N grid, and the cells are all black. You can paint some cells white. But other cells are broken in the sense that they cannot be paint white. For each integer i between 0 and N inclusive, you want to find the number of different painting schemes such that the beautifulness is exactly i. Two painting schemes are considered different if and only if some cells have different colors. Painting nothing is considered to be a scheme.

    For example, N = 3 and there are 4 broken cells as shouwn in Fig. J(a). There are 2 painting schemes for i=2 as shown in Fig. J(b) and J(c).
    You just need to output the answer modulo 10^9 + 7.
    给你一个n * n(n <= 8)的棋盘,上面有一些格子必须是黑色,其它可以染
    黑或者染白,对于一个棋盘,定义它的优美度为它上面最大的连续白色
    子正方形的边长,对于每个0 <= i <= n,问有多少种染色方案使得棋盘的
    优美度为i?
     

    Input

    The first line contains an integer T (T ≤ 10) denoting the number of the test cases.
    For each test case, the first line contains an integer N (1 ≤ N ≤ 8), denoting the size of the grid is N × N . Then N lines follow, each line containing an N-character string of “o” and “*”, where “o” stands for a paintable cell and “*” for a broken cell.
     

    Output

    For each test case, for each integer i between 0 and N inclusive, output the answer in a single line.
     

    Sample Input

    2
    3
    oo*
    ooo
    ***
    8
    oooooooo
    oooooooo
    oooooooo
    oooooooo
    oooooooo
    oooooooo
    oooooooo
    oooooooo

    Sample Output

    1
    29
    2
    0
    1
    401415247
    525424814
    78647876
    661184312
    550223786
    365317939
    130046
    1
     
    题解:
    http://blog.csdn.net/qpswwww/article/details/43883053
    code:
     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cmath>
     4 #include<cstring>
     5 #include<algorithm>
     6 using namespace std;
     7 char ch;
     8 bool ok;
     9 void read(int &x){
    10     for (ok=0,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=1;
    11     for (x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());
    12     if (ok) x=-x;
    13 }
    14 const int maxn=10;
    15 const int maxsta=4100;
    16 const int mod=1000000007;
    17 char s[maxn];
    18 int T,n,m,lim,g[maxn],cur[maxn],newcur[maxn],sum[maxn],power[maxn][maxn],trans[maxn][maxsta][260],f[maxn][maxsta],ans[maxn];
    19 int main(){
    20     for (int siz=2;siz<=8;siz++){
    21         power[siz][0]=1;
    22         for (int i=1;i<=8-siz+1;i++) power[siz][i]=power[siz][i-1]*siz;
    23         for (int sta=0;sta<power[siz][8-siz+1];sta++){
    24             int tmp=sta;
    25             for (int i=0;i<8-siz+1;i++) cur[i]=tmp%siz,tmp/=siz;
    26             for (int s=0;s<(1<<8);s++){
    27                 for (int i=0;i<8;i++) sum[i]=(s>>i)&1;
    28                 for (int i=7;i>=0;i--) sum[i]+=sum[i+1];
    29                 for (int i=0;i<8-siz+1;i++) if (!(sum[i]-sum[i+siz])) newcur[i]=cur[i]+1; else newcur[i]=0;
    30                 int res=0;
    31                 for (int i=0;i<8-siz+1;i++) if (newcur[i]>=siz){res=-1;break;} else res+=newcur[i]*power[siz][i];
    32                 trans[siz][sta][s]=res;
    33             }
    34         }
    35     }
    36     for (read(T);T;T--){
    37         read(n),memset(g,0,sizeof(g)),m=1;
    38         for (int i=1;i<=n;i++){
    39             scanf("%s",s+1);
    40             for (int j=1;j<=n;j++) if (s[j]=='*') g[i]|=(1<<(j-1)); else m<<=1,m%=mod;
    41         }
    42         ans[0]=1,ans[1]=(m-1+mod)%mod,lim=(1<<n);
    43         for (int siz=2;siz<=n;siz++){
    44             f[0][0]=1;
    45             for (int i=1;i<=n;i++){
    46                 for (int sta=0;sta<power[siz][n-siz+1];sta++) f[i][sta]=0;
    47                 for (int sta=0;sta<power[siz][n-siz+1];sta++) if (f[i-1][sta])
    48                     for (int s=0;s<lim;s++) if ((g[i]|s)==s){
    49                         int res=trans[siz][sta][s];
    50                         if (res==-1) continue; else res%=power[siz][n-siz+1];
    51                         f[i][res]+=f[i-1][sta],f[i][res]%=mod;
    52                     }
    53             }
    54             ans[siz]=0;
    55             for (int sta=0;sta<power[siz][n-siz+1];sta++) ans[siz]+=f[n][sta],ans[siz]%=mod;
    56             ans[siz]=(m-ans[siz]+mod)%mod;
    57         }
    58         for (int i=1;i<n;i++) ans[i]=(ans[i]-ans[i+1]+mod)%mod;
    59         for (int i=0;i<=n;i++) printf("%d
    ",ans[i]);
    60     }
    61     return 0;
    62 }
  • 相关阅读:
    JavaIO流(2) ------图片上传,(基于servlet)
    JDBC连接数据库工具类
    实体常量类、内部常量类以及枚举类的区别
    Java IO流 (1)------保存文件与读取文件
    Python type函数和isinstance函数区别
    Python 字符串/列表/元组/字典之间的相互转换
    Pycharm设置开发模板/字体大小/背景颜色
    Pycharm 提示:this license * has been cancelled
    Anaconda是什么?Anconda下载安装教程
    Python __name__ == ‘__main__’详细解释-Python零基础入门教程
  • 原文地址:https://www.cnblogs.com/chenyushuo/p/5224209.html
Copyright © 2011-2022 走看看