zoukankan      html  css  js  c++  java
  • bzoj3905: Square

    Description

    Nothing is more beautiful than square! So, given a grid of cells, each cell being black or white, it is reasonable to evaluate this grid’s beautifulness by the side length of its maximum continuous subsquare which fully consists of white cells.
    Now you’re given an N × N grid, and the cells are all black. You can paint some cells white. But other cells are broken in the sense that they cannot be paint white. For each integer i between 0 and N inclusive, you want to find the number of different painting schemes such that the beautifulness is exactly i. Two painting schemes are considered different if and only if some cells have different colors. Painting nothing is considered to be a scheme.

    For example, N = 3 and there are 4 broken cells as shouwn in Fig. J(a). There are 2 painting schemes for i=2 as shown in Fig. J(b) and J(c).
    You just need to output the answer modulo 10^9 + 7.
    给你一个n * n(n <= 8)的棋盘,上面有一些格子必须是黑色,其它可以染
    黑或者染白,对于一个棋盘,定义它的优美度为它上面最大的连续白色
    子正方形的边长,对于每个0 <= i <= n,问有多少种染色方案使得棋盘的
    优美度为i?
     

    Input

    The first line contains an integer T (T ≤ 10) denoting the number of the test cases.
    For each test case, the first line contains an integer N (1 ≤ N ≤ 8), denoting the size of the grid is N × N . Then N lines follow, each line containing an N-character string of “o” and “*”, where “o” stands for a paintable cell and “*” for a broken cell.
     

    Output

    For each test case, for each integer i between 0 and N inclusive, output the answer in a single line.
     

    Sample Input

    2
    3
    oo*
    ooo
    ***
    8
    oooooooo
    oooooooo
    oooooooo
    oooooooo
    oooooooo
    oooooooo
    oooooooo
    oooooooo

    Sample Output

    1
    29
    2
    0
    1
    401415247
    525424814
    78647876
    661184312
    550223786
    365317939
    130046
    1
     
    题解:
    http://blog.csdn.net/qpswwww/article/details/43883053
    code:
     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cmath>
     4 #include<cstring>
     5 #include<algorithm>
     6 using namespace std;
     7 char ch;
     8 bool ok;
     9 void read(int &x){
    10     for (ok=0,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=1;
    11     for (x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());
    12     if (ok) x=-x;
    13 }
    14 const int maxn=10;
    15 const int maxsta=4100;
    16 const int mod=1000000007;
    17 char s[maxn];
    18 int T,n,m,lim,g[maxn],cur[maxn],newcur[maxn],sum[maxn],power[maxn][maxn],trans[maxn][maxsta][260],f[maxn][maxsta],ans[maxn];
    19 int main(){
    20     for (int siz=2;siz<=8;siz++){
    21         power[siz][0]=1;
    22         for (int i=1;i<=8-siz+1;i++) power[siz][i]=power[siz][i-1]*siz;
    23         for (int sta=0;sta<power[siz][8-siz+1];sta++){
    24             int tmp=sta;
    25             for (int i=0;i<8-siz+1;i++) cur[i]=tmp%siz,tmp/=siz;
    26             for (int s=0;s<(1<<8);s++){
    27                 for (int i=0;i<8;i++) sum[i]=(s>>i)&1;
    28                 for (int i=7;i>=0;i--) sum[i]+=sum[i+1];
    29                 for (int i=0;i<8-siz+1;i++) if (!(sum[i]-sum[i+siz])) newcur[i]=cur[i]+1; else newcur[i]=0;
    30                 int res=0;
    31                 for (int i=0;i<8-siz+1;i++) if (newcur[i]>=siz){res=-1;break;} else res+=newcur[i]*power[siz][i];
    32                 trans[siz][sta][s]=res;
    33             }
    34         }
    35     }
    36     for (read(T);T;T--){
    37         read(n),memset(g,0,sizeof(g)),m=1;
    38         for (int i=1;i<=n;i++){
    39             scanf("%s",s+1);
    40             for (int j=1;j<=n;j++) if (s[j]=='*') g[i]|=(1<<(j-1)); else m<<=1,m%=mod;
    41         }
    42         ans[0]=1,ans[1]=(m-1+mod)%mod,lim=(1<<n);
    43         for (int siz=2;siz<=n;siz++){
    44             f[0][0]=1;
    45             for (int i=1;i<=n;i++){
    46                 for (int sta=0;sta<power[siz][n-siz+1];sta++) f[i][sta]=0;
    47                 for (int sta=0;sta<power[siz][n-siz+1];sta++) if (f[i-1][sta])
    48                     for (int s=0;s<lim;s++) if ((g[i]|s)==s){
    49                         int res=trans[siz][sta][s];
    50                         if (res==-1) continue; else res%=power[siz][n-siz+1];
    51                         f[i][res]+=f[i-1][sta],f[i][res]%=mod;
    52                     }
    53             }
    54             ans[siz]=0;
    55             for (int sta=0;sta<power[siz][n-siz+1];sta++) ans[siz]+=f[n][sta],ans[siz]%=mod;
    56             ans[siz]=(m-ans[siz]+mod)%mod;
    57         }
    58         for (int i=1;i<n;i++) ans[i]=(ans[i]-ans[i+1]+mod)%mod;
    59         for (int i=0;i<=n;i++) printf("%d
    ",ans[i]);
    60     }
    61     return 0;
    62 }
  • 相关阅读:
    再谈用java实现Smtp发送邮件之Socket编程
    Android TextView设置个别字体样式
    Spring4.0MVC学习资料,注解自己主动扫描bean,自己主动注入bean(二)
    Angular团队公布路线图,并演示怎样与React Native集成
    [LeetCode]Remove Element
    poj2481 Cows
    Spark SQL 源代码分析之Physical Plan 到 RDD的详细实现
    MySQL5.6 怎样优化慢查询的SQL语句 -- 慢日志介绍
    容器使用笔记(List篇)
    【Java编程】建立一个简单的JDBC连接-Drivers, Connection, Statement and PreparedStatement
  • 原文地址:https://www.cnblogs.com/chenyushuo/p/5224209.html
Copyright © 2011-2022 走看看