zoukankan      html  css  js  c++  java
  • Keras实现MNIST分类

      仅仅为了学习Keras的使用,使用一个四层的全连接网络对MNIST数据集进行分类,网络模型各层结点数为:784: 256: 128 : 10;

      使用整体数据集的75%作为训练集,25%作为测试集,最终在测试集上的正确率也就只能达到92%,太低了:

                  precision    recall  f1-score   support
    
             0.0       0.95      0.96      0.96      1721
             1.0       0.95      0.97      0.96      1983
             2.0       0.91      0.90      0.91      1793
             3.0       0.91      0.88      0.89      1833
             4.0       0.92      0.93      0.92      1689
             5.0       0.87      0.86      0.87      1598
             6.0       0.92      0.95      0.94      1699
             7.0       0.94      0.93      0.93      1817
             8.0       0.89      0.87      0.88      1721
             9.0       0.89      0.90      0.89      1646
    
       micro avg       0.92      0.92      0.92     17500
       macro avg       0.91      0.92      0.91     17500
    weighted avg       0.92      0.92      0.92     17500
    

    训练过程中,损失和正确率曲线:

    上面使用的优化方法是SGD,下面在保持所有参数不变的情况下,使用RMSpro进行优化,最后的结果看起来好了不少啊达到98%:

                  precision    recall  f1-score   support
    
             0.0       0.99      0.99      0.99      1719
             1.0       0.99      0.99      0.99      1997
             2.0       0.99      0.97      0.98      1785
             3.0       0.97      0.98      0.97      1746
             4.0       0.98      0.98      0.98      1654
             5.0       0.97      0.97      0.97      1556
             6.0       0.99      0.99      0.99      1740
             7.0       0.98      0.97      0.98      1845
             8.0       0.97      0.98      0.97      1669
             9.0       0.96      0.97      0.97      1789
    
       micro avg       0.98      0.98      0.98     17500
       macro avg       0.98      0.98      0.98     17500
    weighted avg       0.98      0.98      0.98     17500
    

    这相差有些大了啊,损失一开始就比较低,正确率就比较高;

    在执行一些epoch之后,训练集损失降低到一定程度并趋于平缓,而测试集的损失却在逐渐升高,看来是过拟合了啊。

    也就是说大概在最初几个epoch的时候训练集的损失比较低,而且测试集的损失达到最低,正确率也都不错;应该就可以停止了。

    代码:

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # @Time : 19-5-9
    
    """
    implement simple neural networks using the Keras libary
    """
    
    __author__ = 'Zhen Chen'
    
    
    # import the necessary packages
    from sklearn.preprocessing import LabelBinarizer
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import classification_report
    from keras.models import Sequential
    from keras.layers.core import Dense
    from keras.optimizers import SGD
    from sklearn import datasets
    import matplotlib.pyplot as plt
    import numpy as np
    import argparse
    
    # construct the argument parse and parse the arguments
    parser = argparse.ArgumentParser()
    parser.add_argument("-o", "--output", default="./Training Loss and Accuracy.png",
                        help="path to the output loss/accuracy plot")
    args = parser.parse_args()
    
    # grab the MNIST datset (if this is your first time running this
    # script, the download may take a minute -- the 55MB MNIST datset
    # will be downloaded
    print("[INFO] loading MNIST (full) dataset...")
    dataset = datasets.fetch_mldata("MNIST Original")
    
    # scale the raw pixel intensities to the range [0, 1.0], then
    # construct the training and testing splits
    data = dataset.data.astype("float") / 255.0
    (trainX, testX, trainY, testY) = train_test_split(data, dataset.target, test_size=0.25)
    
    # convert the labels form integers to vectors
    lb = LabelBinarizer()
    trainY = lb.fit_transform(trainY)
    testY = lb.fit_transform(testY)
    
    # define the 784-256-128-10 architecture using Keras
    model = Sequential()
    model.add(Dense(256, input_shape=(784,), activation="sigmoid"))
    model.add(Dense(128, activation="sigmoid"))
    model.add(Dense(10, activation="softmax"))
    
    # train the model using SGD
    print("[INFO] training network...")
    sgd = SGD(0.01)
    model.compile(loss="categorical_crossentropy", optimizer=sgd, metrics=["accuracy"])
    H = model.fit(trainX, trainY, validation_data=(testX, testY), epochs=100, batch_size=128)
    
    # evaluate the network
    print("[INFO] evaluating network...")
    predictions = model.predict(testX, batch_size=128)
    print(classification_report(testY.argmax(axis=1),
                                predictions.argmax(axis=1),
                                target_names=[str(x) for x in lb.classes_]))
    
    # plot the training loss and accuracy
    plt.style.use("ggplot")
    plt.figure()
    plt.plot(np.arange(0, 100), H.history["loss"], label="train_loss")
    plt.plot(np.arange(0, 100), H.history["val_loss"], label="val_loss")
    plt.plot(np.arange(0, 100), H.history["acc"], label="train_acc")
    plt.plot(np.arange(0, 100), H.history["val_acc"], label="val_loss")
    plt.title("Training Loss and Accuracy")
    plt.xlabel("Epoch #")
    plt.ylabel("Loss/Accuracy")
    plt.legend()
    plt.savefig(args.output)
    
  • 相关阅读:
    Docker 学习笔记
    Docker 镜像加速器(如何加速下载)
    Simple-DQN代码的理解笔记
    c语言NULL和0区别及NULL详解
    C 语言的 const 指针,指针的const有什么不同
    Edge和Level触发的中断
    尚硅谷设计模式笔记-适配器模式
    nginx服务器部署dist文件夹
    nginx服务器部署dist文件夹
    Jexl表达式引擎-根据字符串动态执行JAVA.md
  • 原文地址:https://www.cnblogs.com/chenzhen0530/p/10836627.html
Copyright © 2011-2022 走看看