zoukankan      html  css  js  c++  java
  • 这大概是最细的YOLOX中的Mosaic And Mixup 实现源码分析了吧

    更好的阅读体验请见博客

    前言

    ​ 看了yolox后发现数据增强是真的nb,但是自己想如何实现的时候就感觉不太行了(不能简洁的实现)。又一想,数据增强这种trick肯定会用到其他网络的dataloader里面啊,所以仔细研究了一下代码复现一下。

    ​ 最后附上我自己封装的mosaic和mixup,不自己封装到时候现copy别人的都不知bug在哪 虽然核心与原论文差不多

    Mosaic

    源码分析

    下面根据yolox源码进行分析:

    yolox想法是先生成一个Dataset类,然后根据这个类可以进行iterater,故写了一个pull_item函数。

    基于以上,然后可以定义到MosaicDetection类

    class MosaicDetection(Dataset):
        """Detection dataset wrapper that performs mixup for normal dataset."""
            def __init__(
            self, dataset, img_size, mosaic=True, preproc=None,
            degrees=10.0, translate=0.1, mosaic_scale=(0.5, 1.5),
            mixup_scale=(0.5, 1.5), shear=2.0, perspective=0.0,
            enable_mixup=True, mosaic_prob=1.0, mixup_prob=1.0, *args
        ):
            super().__init__(img_size, mosaic=mosaic)
            self._dataset = dataset
            self.preproc = preproc
            self.degrees = degrees
            self.translate = translate
            self.scale = mosaic_scale
            self.shear = shear
            self.perspective = perspective
            self.mixup_scale = mixup_scale
            self.enable_mosaic = mosaic
            self.enable_mixup = enable_mixup
            self.mosaic_prob = mosaic_prob
            self.mixup_prob = mixup_prob
            self.local_rank = get_local_rank()
    

    参数含义就不讲了,关键是self._dataset这个字段,可以看出Mosaic是在原先的Dataset基础上实现的。

    也就是说需要的只是重写getitem和len,下面开始讲解getitem

    第一部分 图片拼接

        def __getitem__(self, idx):
            if self.enable_mosaic and random.random() < self.mosaic_prob:
                mosaic_labels = []
                input_dim = self._dataset.input_dim
                input_h, input_w = input_dim[0], input_dim[1]
    
                # yc, xc = s, s  # mosaic center x, y
                # 画布大小为input_h,input_w
                # 拼接公共点位置
                yc = int(random.uniform(0.5 * input_h, 1.5 * input_h))
                xc = int(random.uniform(0.5 * input_w, 1.5 * input_w))
    
                # 3 additional image indices
                indices = [idx] + [random.randint(0, len(self._dataset) - 1) for _ in range(3)]
    
                for i_mosaic, index in enumerate(indices):
                    img, _labels, _, img_id = self._dataset.pull_item(index)
                    # 得到的第一张图片的原始大小
                    h0, w0 = img.shape[:2]  
                    
                    scale = min(1. * input_h / h0, 1. * input_w / w0)
                    # 放大到input size
                    img = cv2.resize(
                        img, (int(w0 * scale), int(h0 * scale)), interpolation=cv2.INTER_LINEAR
                    )
                    # generate output mosaic image
                    (h, w, c) = img.shape[:3]
                    # 生成一个新的画布,颜色是114
                    if i_mosaic == 0:
                        mosaic_img = np.full((input_h * 2, input_w * 2, c), 114, dtype=np.uint8)
    
                    # suffix l means large image, while s means small image in mosaic aug.
                    # 根据图片的先后顺序分别放入左上、右上、左下、右下四个方向。
                    # 函数返回的是基于画布的新坐标 和 原图像的坐标(要注意由于0.5-1.5倍,原图像可能会超出画布范围
                    (l_x1, l_y1, l_x2, l_y2), (s_x1, s_y1, s_x2, s_y2) = get_mosaic_coordinate(
                        mosaic_img, i_mosaic, xc, yc, w, h, input_h, input_w
                    )
    			   # 赋值到画布
                    mosaic_img[l_y1:l_y2, l_x1:l_x2] = img[s_y1:s_y2, s_x1:s_x2]
                    plt.imshow(mosaic_img)
                    plt.show()
                    # 坐标偏移量
                    padw, padh = l_x1 - s_x1, l_y1 - s_y1
    
                    labels = _labels.copy()
                    # Normalized xywh to pixel xyxy format
                    # 个人觉得这个注释意思有问题(可能我理解错了?下面细说
                    # 这是转换到新坐标轴的坐标
                    if _labels.size > 0:
                        # 左上角坐标
                        labels[:, 0] = scale * _labels[:, 0] + padw
                        labels[:, 1] = scale * _labels[:, 1] + padh
                        # 右下
                        labels[:, 2] = scale * _labels[:, 2] + padw
                        labels[:, 3] = scale * _labels[:, 3] + padh
                    mosaic_labels.append(labels)
                plt.imshow(mosaic_img)
                plt.show()
    
    

    ​ 大概思路是先随机得到四张图片,然后创建一个大小为网络输入两倍的input,随机(0.5-1.5 scale)生成一个mosaic center(简单理解就是四张图片的公共点)。之后按照顺序拼接到左上、右上、左下、右下四个部分。

    ​ 当一张图片放入画布时,得到x,y的原偏移量(padw,padh),然后计算偏移后的bbox位置。

    ​ 有个问题是新bbox的坐标,注释写的是xywh转x1 y1 x2 y2,但是个人实现的时候发现输入是bbox的x1y1x2y2转换能正确框出,有无评论区大佬说明一下。

    第二部分:图像旋转与剪切

    		   if len(mosaic_labels):
            	    # 将bbox超出画布部分变为画布边缘
                    mosaic_labels = np.concatenate(mosaic_labels, 0)
                    np.clip(mosaic_labels[:, 0], 0, 2 * input_w, out=mosaic_labels[:, 0])
                    np.clip(mosaic_labels[:, 1], 0, 2 * input_h, out=mosaic_labels[:, 1])
                    np.clip(mosaic_labels[:, 2], 0, 2 * input_w, out=mosaic_labels[:, 2])
                    np.clip(mosaic_labels[:, 3], 0, 2 * input_h, out=mosaic_labels[:, 3])
    		   # 顺时针旋转degree°,输出新的图像和新的bbox坐标
                mosaic_img, mosaic_labels = random_perspective(
                    mosaic_img,
                    mosaic_labels,
                    degrees=self.degrees,
                    translate=self.translate,
                    scale=self.scale,
                    shear=self.shear,
                    perspective=self.perspective,
                    border=[-input_h // 2, -input_w // 2],
                )  # border to remove
    
                
    

    ​ 这一部分就比较简单了,先是用clip函数处理好画布,然后旋转一个角度,旋转后bbox坐标变化其实可以不用关心,因为角度很小物体几乎超不出bbox的范围。细究旋转代码可以自己去看看我不想看了最后还裁剪成了input size,所以这个最后输出还是input size而不是2*input size

    Mix up

    论文mosaic后半部分还增加了mixup(可选,但默认使用

    		   # -----------------------------------------------------------------
                # CopyPaste: https://arxiv.org/abs/2012.07177
                # -----------------------------------------------------------------
                if (
                    self.enable_mixup
                    and not len(mosaic_labels) == 0
                    and random.random() < self.mixup_prob
                    # 如果mosaic_prob=0.5 mixup_prob=0.5这里0.5*0.5是0.25的概率mixup了
                ):
                    mosaic_img, mosaic_labels = self.mixup(mosaic_img, mosaic_labels, self.input_dim)
                # 这里还增加了其他的预处理
                mix_img, padded_labels = self.preproc(mosaic_img, mosaic_labels, self.input_dim)
                img_info = (mix_img.shape[1], mix_img.shape[0])
    
                # -----------------------------------------------------------------
                # img_info and img_id are not used for training.
                # They are also hard to be specified on a mosaic image.
                # -----------------------------------------------------------------
                return mix_img, padded_labels, img_info, img_id
    
            else:
                # 这个else是和mosaic的if对应的,不mosaic则默认只有预处理
                self._dataset._input_dim = self.input_dim
                img, label, img_info, img_id = self._dataset.pull_item(idx)
                img, label = self.preproc(img, label, self.input_dim)
                return img, label, img_info, img_id
    
    # mixup函数    
    def mixup(self, origin_img, origin_labels, input_dim):
            jit_factor = random.uniform(*self.mixup_scale)
            # 图像是否翻转
            FLIP = random.uniform(0, 1) > 0.5
            cp_labels = []
            # 保证不是背景 load_anno函数不涉及图像读取会更快(coco类
            while len(cp_labels) == 0:
                cp_index = random.randint(0, self.__len__() - 1)
                cp_labels = self._dataset.load_anno(cp_index)
            # 确定不是背景后再载入img
            img, cp_labels, _, _ = self._dataset.pull_item(cp_index)
    	    # 创建画布
            if len(img.shape) == 3:
                cp_img = np.ones((input_dim[0], input_dim[1], 3), dtype=np.uint8) * 114
            else:
                cp_img = np.ones(input_dim, dtype=np.uint8) * 114
    	    # 计算scale
            cp_scale_ratio = min(input_dim[0] / img.shape[0], input_dim[1] / img.shape[1])
            # resize
            resized_img = cv2.resize(
                img,
                (int(img.shape[1] * cp_scale_ratio), int(img.shape[0] * cp_scale_ratio)),
                interpolation=cv2.INTER_LINEAR,
            )
    	    # 放入画布
            cp_img[
                : int(img.shape[0] * cp_scale_ratio), : int(img.shape[1] * cp_scale_ratio)
            ] = resized_img
    	    # 画布放大jit factor倍
            cp_img = cv2.resize(
                cp_img,
                (int(cp_img.shape[1] * jit_factor), int(cp_img.shape[0] * jit_factor)),
            )
            cp_scale_ratio *= jit_factor
    		
            if FLIP:
                cp_img = cp_img[:, ::-1, :]
    	    # 以上创建好了一个可以mix up的图像
            
            # 下面开始mix up
            
            # 创建的画布向输入的图像上面叠加
            origin_h, origin_w = cp_img.shape[:2]
            target_h, target_w = origin_img.shape[:2]
            # 取最大面积然后全部padding 0 
            padded_img = np.zeros(
                (max(origin_h, target_h), max(origin_w, target_w), 3), dtype=np.uint8
            )
            # 放入新画布(也只有新画布
            padded_img[:origin_h, :origin_w] = cp_img
            
    
            # 随机偏移量
            x_offset, y_offset = 0, 0
            if padded_img.shape[0] > target_h:
                y_offset = random.randint(0, padded_img.shape[0] - target_h - 1)
            if padded_img.shape[1] > target_w:
                x_offset = random.randint(0, padded_img.shape[1] - target_w - 1)
            # 裁剪画布
            padded_cropped_img = padded_img[
                y_offset: y_offset + target_h, x_offset: x_offset + target_w
            ]
            
    
            # 调整scale后画布中图像的bbox坐标
            cp_bboxes_origin_np = adjust_box_anns(
                cp_labels[:, :4].copy(), cp_scale_ratio, 0, 0, origin_w, origin_h
            )
            # 是否镜像翻转
            if FLIP:
                cp_bboxes_origin_np[:, 0::2] = (
                    origin_w - cp_bboxes_origin_np[:, 0::2][:, ::-1]
                )
               
            # 调整裁剪后bbox坐标(以裁剪左上角为新的原点
            cp_bboxes_transformed_np = cp_bboxes_origin_np.copy()
            cp_bboxes_transformed_np[:, 0::2] = np.clip(
                cp_bboxes_transformed_np[:, 0::2] - x_offset, 0, target_w
            )
            cp_bboxes_transformed_np[:, 1::2] = np.clip(
                cp_bboxes_transformed_np[:, 1::2] - y_offset, 0, target_h
            )
            # 通过五个条件判断offset是否合理,下面细说
            keep_list = box_candidates(cp_bboxes_origin_np.T, cp_bboxes_transformed_np.T, 5)
    
            # 满足条件则合并label和image
            if keep_list.sum() >= 1.0:
                cls_labels = cp_labels[keep_list, 4:5].copy()
                box_labels = cp_bboxes_transformed_np[keep_list]
                labels = np.hstack((box_labels, cls_labels))
                origin_labels = np.vstack((origin_labels, labels))
                origin_img = origin_img.astype(np.float32)
                origin_img = 0.5 * origin_img + 0.5 * padded_cropped_img.astype(np.float32)
    
            return origin_img.astype(np.uint8), origin_labels
    
    

    总体来说比较好理解,因为坐标变换方法和mosaic相同,而最头疼的就是坐标变换了。

    首先随机出一个非背景图像(必定有bbox的图像),然后缩放到input size,再放入input size(比如650*640)大小的画布。然后画布整体放大到jit facotr倍,在原图和新图中寻找最大的画布,在大画布中随机出裁剪偏移量,裁剪,检查没问题后mix up即可。

    大致流程如下(省略了寻找最大的画布过程):

    下面讲检查函数box_candidates:

    def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.2):
        # box1(4,n), box2(4,n)
        # Compute candidate boxes which include follwing 5 things:
        # box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
        w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
        w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
        ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16))  # aspect ratio
        return (
            (w2 > wh_thr)
            & (h2 > wh_thr)
            & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr)
            & (ar < ar_thr)
        )  # candidates
    

    就是将偏移后的box和偏移前的box进行比较,四项指标分别是偏移后的box宽度,高度,面积,box长宽比

    注释里写的五个实现只有四个

    {% image https://cdn.jsdelivr.net/gh/dummerchen/My_Image_Bed03@image_bed_001/img/20210926215440.png ,alt='最终结果,中间的那两个是mix up',height=60vh %}

    自用代码

    因为yolox等里面肯定是用了各种东西对dataloader加速比如pycoco类封装(这个包不是很懂)、preload等,一时半会也看不完。只好剥离了,loader的效率估计不会那么高 以后变成大牛了再加吧

    # -*- coding:utf-8 -*-
    # @Author : Dummerfu
    # @Contact : https://github.com/dummerchen 
    # @Time : 2021/9/25 14:06
    import math
    from draw_box_utli import draw_box
    from torch.utils.data import Dataset
    from VocDataset import VocDataSet
    import matplotlib as mpl
    import random
    import cv2
    import numpy as np
    from matplotlib import pyplot as plt
    
    mpl.rcParams['font.sans-serif'] = 'SimHei'
    mpl.rcParams['axes.unicode_minus'] = False
    
    
    def get_mosaic_coordinate(mosaic_image, mosaic_index, xc, yc, w, h, input_h, input_w):
        # TODO update doc
        # index0 to top left part of image
        if mosaic_index == 0:
            x1, y1, x2, y2 = max(xc - w, 0), max(yc - h, 0), xc, yc
            small_coord = w - (x2 - x1), h - (y2 - y1), w, h
        # index1 to top right part of image
        elif mosaic_index == 1:
            x1, y1, x2, y2 = xc, max(yc - h, 0), min(xc + w, input_w * 2), yc
            small_coord = 0, h - (y2 - y1), min(w, x2 - x1), h
        # index2 to bottom left part of image
        elif mosaic_index == 2:
            x1, y1, x2, y2 = max(xc - w, 0), yc, xc, min(input_h * 2, yc + h)
            small_coord = w - (x2 - x1), 0, w, min(y2 - y1, h)
        # index2 to bottom right part of image
        elif mosaic_index == 3:
            x1, y1, x2, y2 = xc, yc, min(xc + w, input_w * 2), min(input_h * 2, yc + h)  # noqa
            small_coord = 0, 0, min(w, x2 - x1), min(y2 - y1, h)
        return (x1, y1, x2, y2), small_coord
    
    
    def random_perspective(
            img,
            targets=(),
            degrees=10,
            translate=0.1,
            scale=0.1,
            shear=10,
            perspective=0.0,
            border=(0, 0),
    ):
        # targets = [cls, xyxy]
        height = img.shape[0] + border[0] * 2  # shape(h,w,c)
        width = img.shape[1] + border[1] * 2
    
        # Center
        C = np.eye(3)
        C[0, 2] = -img.shape[1] / 2  # x translation (pixels)
        C[1, 2] = -img.shape[0] / 2  # y translation (pixels)
    
        # Rotation and Scale
        R = np.eye(3)
        a = random.uniform(-degrees, degrees)
        # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
        s = random.uniform(scale[0], scale[1])
        # s = 2 ** random.uniform(-scale, scale)
        R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
    
        # Shear
        S = np.eye(3)
        S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
        S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)
    
        # Translation
        T = np.eye(3)
        T[0, 2] = (
                random.uniform(0.5 - translate, 0.5 + translate) * width
        )  # x translation (pixels)
        T[1, 2] = (
                random.uniform(0.5 - translate, 0.5 + translate) * height
        )  # y translation (pixels)
    
        # Combined rotation matrix
        M = T @ S @ R @ C  # order of operations (right to left) is IMPORTANT
    
        ###########################
        # For Aug out of Mosaic
        # s = 1.
        # M = np.eye(3)
        ###########################
    
        if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
            if perspective:
                img = cv2.warpPerspective(
                    img, M, dsize=(width, height), borderValue=(114, 114, 114)
                )
            else:  # affine
                img = cv2.warpAffine(
                    img, M[:2], dsize=(width, height), borderValue=(114, 114, 114)
                )
    
        # Transform label coordinates
        n = len(targets)
        if n:
            # warp points
            xy = np.ones((n * 4, 3))
            xy[:, :2] = targets[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(
                n * 4, 2
            )  # x1y1, x2y2, x1y2, x2y1
            xy = xy @ M.T  # transform
            if perspective:
                xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8)  # rescale
            else:  # affine
                xy = xy[:, :2].reshape(n, 8)
    
            # create new boxes
            x = xy[:, [0, 2, 4, 6]]
            y = xy[:, [1, 3, 5, 7]]
            xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
    
            # clip boxes
            xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
            xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
    
            # filter candidates
            i = box_candidates(box1=targets[:, :4].T * s, box2=xy.T)
            targets = targets[i]
            targets[:, :4] = xy[i]
    
        return img, targets
    
    
    def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.2):
        # box1(4,n), box2(4,n)
        # Compute candidate boxes which include follwing 5 things:
        # box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
        w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
        w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
        ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16))  # aspect ratio
    
        return (
                (w2 > wh_thr)
                & (h2 > wh_thr)
                & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr)
                & (ar < ar_thr)
        )  # candidates
    
    def adjust_box_anns(bbox, scale_ratio, padw, padh, w_max, h_max):
        bbox[:, 0::2] = np.clip(bbox[:, 0::2] * scale_ratio + padw, 0, w_max)
        bbox[:, 1::2] = np.clip(bbox[:, 1::2] * scale_ratio + padh, 0, h_max)
        return bbox
    
    class MasaicDataset(Dataset):
    
        def __init__(
            self, dataset, input_size=(640,640),mosaic=True, preproc=None,
            degrees=10.0, translate=0.1, mosaic_scale=(0.5, 1.5),
            mixup_scale=(0.5, 1.5), shear=2.0, perspective=0.0,
            enable_mixup=True, mosaic_prob=1.0, mixup_prob=1.0, *args
        ):
            """
    
            Args:
                dataset(Dataset) : Pytorch dataset object.
                img_size (tuple):
                mosaic (bool): enable mosaic augmentation or not.
                preproc (func):
                degrees (float):
                translate (float):
                mosaic_scale (tuple):
                mixup_scale (tuple):
                shear (float):
                perspective (float):
                enable_mixup (bool):
                *args(tuple) : Additional arguments for mixup random sampler.
            """
            self._dataset = dataset
            self.input_dim=input_size
            self.preproc = preproc
            self.degrees = degrees
            self.translate = translate
            self.scale = mosaic_scale
            self.shear = shear
            self.perspective = perspective
            self.mixup_scale = mixup_scale
            self.enable_mosaic = mosaic
            self.enable_mixup = enable_mixup
            self.mosaic_prob = mosaic_prob
            self.mixup_prob = mixup_prob
    
        def __len__(self):
            return len(self._dataset)
    
        def __getitem__(self, idx):
            if self.enable_mosaic and random.random() < self.mosaic_prob:
                mosaic_labels = []
    
                input_h, input_w = self.input_dim[0], self.input_dim[1]
                # input_h,input_w=2600,4624
                # yc, xc = s, s  # mosaic center x, y
                # 画布大小为input_h,input_w
                # yc = int(random.uniform(0.5 * input_h, 1.5 * input_h))
                # xc = int(random.uniform(0.5 * input_w, 1.5 * input_w))
                yc=640
                xc=640
                # 3 additional image indices
                indices = [idx] + [random.randint(0, len(self._dataset) - 1) for _ in range(3)]
    
                for i_mosaic, index in enumerate(indices):
                    img, target = self._dataset.pull_item(index)
                    _labels=target['labels']
    
                    h0, w0 = target['image_info']  # orig hw
                    scale = min(1. * input_h / h0, 1. * input_w / w0)
                    # img 放大到input size
                    img = cv2.resize(
                        img, (int(w0 * scale), int(h0 * scale)), interpolation=cv2.INTER_LINEAR
                    )
                    # generate output mosaic image
                    (h, w, c) = img.shape[:3]
    
                    # draw_box(
                    #     img, _labels[:, :4],
                    #     classes=_labels[:, -1],
                    #     category_index=self._dataset.name2num,
                    #     scores=np.ones(shape=(len(_labels[:, -1]))),
                    #     thresh=0
                    # )
    
                    if i_mosaic == 0:
                        mosaic_img = np.full((input_h * 2, input_w * 2, c), 114, dtype=np.uint8)
    
                    # suffix l means large image, while s means small image in mosaic aug.
                    (l_x1, l_y1, l_x2, l_y2), (s_x1, s_y1, s_x2, s_y2) = get_mosaic_coordinate(
                        mosaic_img, i_mosaic, xc, yc, w, h, input_h, input_w
                    )
    
                    mosaic_img[l_y1:l_y2, l_x1:l_x2] = img[s_y1:s_y2, s_x1:s_x2]
    
                    padw, padh = l_x1 - s_x1, l_y1 - s_y1
    
                    labels = _labels.copy()
                    # Normalized xywh to pixel xyxy format
                    if _labels.size > 0:
                        labels[:, 0] = scale * _labels[:, 0] + padw
                        labels[:, 1] = scale * _labels[:, 1] + padh
                        labels[:, 2] = scale * _labels[:, 2] + padw
                        labels[:, 3] = scale * _labels[:, 3] + padh
    
                    mosaic_labels.append(labels)
    
                if len(mosaic_labels):
                    mosaic_labels = np.concatenate(mosaic_labels, 0)
                    np.clip(mosaic_labels[:, 0], 0, 2 * input_w, out=mosaic_labels[:, 0])
                    np.clip(mosaic_labels[:, 1], 0, 2 * input_h, out=mosaic_labels[:, 1])
                    np.clip(mosaic_labels[:, 2], 0, 2 * input_w, out=mosaic_labels[:, 2])
                    np.clip(mosaic_labels[:, 3], 0, 2 * input_h, out=mosaic_labels[:, 3])
    
    
                mosaic_img, mosaic_labels = random_perspective(
                    mosaic_img,
                    mosaic_labels,
                    degrees=self.degrees,
                    translate=self.translate,
                    scale=self.scale,
                    shear=self.shear,
                    perspective=self.perspective,
                    border=[-input_h // 2, -input_w // 2],
                )  # border to remove
    
                # -----------------------------------------------------------------
                # CopyPaste: https://arxiv.org/abs/2012.07177
                # -----------------------------------------------------------------
                if (
                    self.enable_mixup
                    and not len(mosaic_labels) == 0
                    and random.random() < self.mixup_prob
                ):
                    mosaic_img, mosaic_labels = self.mixup(mosaic_img, mosaic_labels, self.input_dim)
                # mix_img, padded_labels = self.preproc(mosaic_img, mosaic_labels, self.input_dim)
                img_info = (mosaic_img.shape[1], mosaic_img.shape[0])
    
                draw_box(
                    mosaic_img, mosaic_labels[:, :4],
                    classes=mosaic_labels[:, -1],
                    category_index=self._dataset.num2name,
                    scores=np.ones(shape=(len(mosaic_labels[:, -1]))),
                    thresh=0
                )
                # 想怎么输出怎么输出
                return mosaic_img, mosaic_labels,img_info
    
            else:
                img, target = self._dataset.pull_item(idx)
                # img, label = self.preproc(img, label, self.input_dim)
                return img, target
    
        def mixup(self, origin_img, origin_labels, input_dim):
            jit_factor = random.uniform(*self.mixup_scale)
            FLIP = random.uniform(0, 1) > 0.5
            cp_labels = []
            img=None
            while len(cp_labels) == 0:
                cp_index = random.randint(0, self.__len__() - 1)
                img,target = self._dataset.pull_item(cp_index)
                cp_labels=target['labels']
    
            draw_box(img,cp_labels[:,:4],cp_labels[:,-1],self._dataset.num2name,scores=np.ones(len(cp_labels[:,-1])))
            if len(img.shape) == 3:
                cp_img = np.ones((input_dim[0], input_dim[1], 3), dtype=np.uint8) * 114
            else:
                cp_img = np.ones(input_dim, dtype=np.uint8) * 114
    
            cp_scale_ratio = min(input_dim[0] / img.shape[0], input_dim[1] / img.shape[1])
            resized_img = cv2.resize(
                img,
                (int(img.shape[1] * cp_scale_ratio), int(img.shape[0] * cp_scale_ratio)),
                interpolation=cv2.INTER_LINEAR,
            )
    
            cp_img[
                : int(img.shape[0] * cp_scale_ratio), : int(img.shape[1] * cp_scale_ratio)
            ] = resized_img
    
            cp_img = cv2.resize(
                cp_img,
                (int(cp_img.shape[1] * jit_factor), int(cp_img.shape[0] * jit_factor)),
            )
            cp_scale_ratio *= jit_factor
    
            if FLIP:
                cp_img = cp_img[:, ::-1, :]
    
            origin_h, origin_w = cp_img.shape[:2]
            target_h, target_w = origin_img.shape[:2]
            padded_img = np.zeros(
                (max(origin_h, target_h), max(origin_w, target_w), 3), dtype=np.uint8
            )
            padded_img[:origin_h, :origin_w] = cp_img
    
            x_offset, y_offset = 0, 0
            if padded_img.shape[0] > target_h:
                y_offset = random.randint(0, padded_img.shape[0] - target_h - 1)
            if padded_img.shape[1] > target_w:
                x_offset = random.randint(0, padded_img.shape[1] - target_w - 1)
            padded_cropped_img = padded_img[
                y_offset: y_offset + target_h, x_offset: x_offset + target_w
            ]
    
            cp_bboxes_origin_np = adjust_box_anns(
                cp_labels[:, :4].copy(), cp_scale_ratio, 0, 0, origin_w, origin_h
            )
    
    
            if FLIP:
                cp_bboxes_origin_np[:, 0::2] = (
                    origin_w - cp_bboxes_origin_np[:, 0::2][:, ::-1]
                )
            cp_bboxes_transformed_np = cp_bboxes_origin_np.copy()
            cp_bboxes_transformed_np[:, 0::2] = np.clip(
                cp_bboxes_transformed_np[:, 0::2] - x_offset, 0, target_w
            )
            cp_bboxes_transformed_np[:, 1::2] = np.clip(
                cp_bboxes_transformed_np[:, 1::2] - y_offset, 0, target_h
            )
            keep_list = box_candidates(cp_bboxes_origin_np.T, cp_bboxes_transformed_np.T, 5)
    
            if keep_list.sum() >= 1.0:
                cls_labels = cp_labels[keep_list, 4:5].copy()
                box_labels = cp_bboxes_transformed_np[keep_list]
                labels = np.hstack((box_labels, cls_labels))
                origin_labels = np.vstack((origin_labels, labels))
                origin_img = origin_img.astype(np.float32)
                origin_img = 0.5 * origin_img + 0.5 * padded_cropped_img.astype(np.float32)
    
            return origin_img.astype(np.uint8), origin_labels
    
    
    
    
    if __name__ == '__main__':
        pass
        # vocdataset=VocDataSet(voc_root=r'E:py_exerciseDatasetpear_datasetvoc',)
        vocdataset=VocDataSet(
            voc_root=r'E:py_exercisedeep-learning-for-image-processingpytorch_object_detectionfaster_rcnn	abocaTobacco',
            image_folder_name='JPEGImages'
        )
        dataset=MasaicDataset(
            dataset=vocdataset,
        )
        next(iter(dataset))
    
    $道路千万条,点赞第一条;阅读不规范,笔者两行泪$
  • 相关阅读:
    Web 呼起 APP
    移动端监测离开页面
    input 呼起数字键盘
    建站工具Hexo
    linux 查找并kill进程
    linux php --ini
    Git + BeyondCompare
    Linux连续执行多条命令
    chrome start.js报错
    emoji和utf8mb4字符集
  • 原文地址:https://www.cnblogs.com/cherrypill/p/15340379.html
Copyright © 2011-2022 走看看