可测空间(Measurable Space)和测度空间(Measure Space)
集合X,X上的一个σ-algebra A,则(X,A)被称为可测空间(measurable space)
再在A上定义一个测度μ,则(X,A,μ)被称为测度空间(measure space)
概率空间(Probability Space)
对于一个测度空间$(Omega, F, P)$, 其中$Omega$被称为Sample Space,F被称为events,P为概率测度,其中P在整个Sample Space上的测度为1
可测函数(Measurable function)
Let $(X, Sigma)$ and $(Y, T)$ be measurable spaces, meaning that $X$ and $Y$ are sets equipped with respective σ-algebra $Sigma$ and $T$. A function $fcolon X mapsto Y$ is said to be measurable if for every $E in T$ the pre-image of $E$ under $f$ is in $Sigma$; i.e.
- $ f^{-1}(E)={x in X mid f(x) in E } in Sigma$, $forall E in T$.
If $fcolon X mapsto Y$ is a measurable function, we will write
- $f colon (X, Sigma) mapsto (Y, T)$.
to emphasize the dependency on the σ-algebras $Sigma$ and $T$.
随机变量(Random Varible)
随机变量就是一个可测函数