zoukankan      html  css  js  c++  java
  • interleaver design

    linear coprime interleavers.
    ------------------------------------------------
    [ recursion version ]
    f(0) = 0
    f(i) = mod(a * f(i-1) + b, N), i=1,2,...,N-1
    [ parallel version ]
    if a = 1,
      f(i) = mod(b * i, N), i=0,1,...,N-1
    else
      f(i) = mod( ((1-a^i) * b) / (1-a), N), i=0,2,...,N-1
    end

    when a=1 and b is chosen to be the closest integer, which is relatively prime to N, to the Golden section of N, it's Golden prime interleaver


    where:
    0 < a < N, a-1 be a multiple of p, for every prime p dividing N; a-1 be a multiple of 4, if N is a multiple of 4.

     0 <= b < N, and b is relatively prime to N;

    Welch-Costas Interleaver (costa array)
    ------------------------------------------------
    [ recursion version ]
    f(0) = 0
    f(i) = mod(a*f(i-1), N+1);
    [ parallel version ]
    f(i) = mod(a^i, N+1) - 1, i = 0,1,...,N-1

    where,
    N is a prime number minus 1;
    a is a primitive element in GF(N+1)


    Ref:
    J. Costas, A study of a class of detection waveforms having nearly ideal range. Doppler ambiguity properties, Proc. IEEE 72 (8) (1984) 996–1009.
    C. Heegard, and S. B. Wicker., Turbo Coding. Boston: Kluwer Academic Publishers, 1999. pp:54-55.


    Takeshita-Costello Interleaver
    --------------------------------------------------
    c(i) = ( a * i * (i+1) / 2 ) mod N,    i = 0,1,...,N-1
    f(c(i)) = c( (i+1) mod N ),             i = 0,1,...,N-1

    where  N should be 2^m, a should be an odd number less than N


    Ref:
    O. Y. Takeshita, and D. J. Costello, D.J., Jr., New deterministic interleaver designs for turbo codes IEEE Trans. Inf. Theory, vol.46, no.6, pp:1988-2006, Sept. 2000

  • 相关阅读:
    如何判断某个设备文件是否存在
    shell中export理解误区
    linux命令之tail
    国内较快的gnu镜像:北京交通大学镜像
    Cmake的交叉编译
    linux 命令之grep
    makefile之变量赋值
    makefile之VPATH和vpath的使用
    arm汇编进入C函数分析,C函数压栈,出栈,传参,返回值
    Jlink 软件断点和硬件断点
  • 原文地址:https://www.cnblogs.com/chest/p/12559606.html
Copyright © 2011-2022 走看看