zoukankan      html  css  js  c++  java
  • HDU 1160 FatMouse's Speed

    J - FatMouse's Speed
    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

    Description

    FatMouse believes that the fatter a mouse is, the faster it runs. To disprove this, you want to take the data on a collection of mice and put as large a subset of this data as possible into a sequence so that the weights are increasing, but the speeds are decreasing. 
     

    Input

    Input contains data for a bunch of mice, one mouse per line, terminated by end of file. 

    The data for a particular mouse will consist of a pair of integers: the first representing its size in grams and the second representing its speed in centimeters per second. Both integers are between 1 and 10000. The data in each test case will contain information for at most 1000 mice. 

    Two mice may have the same weight, the same speed, or even the same weight and speed. 
     

    Output

    Your program should output a sequence of lines of data; the first line should contain a number n; the remaining n lines should each contain a single positive integer (each one representing a mouse). If these n integers are m[1], m[2],..., m[n] then it must be the case that 

    W[m[1]] < W[m[2]] < ... < W[m[n]] 

    and 

    S[m[1]] > S[m[2]] > ... > S[m[n]] 

    In order for the answer to be correct, n should be as large as possible. 
    All inequalities are strict: weights must be strictly increasing, and speeds must be strictly decreasing. There may be many correct outputs for a given input, your program only needs to find one. 
     

    Sample Input

    6008 1300 6000 2100 500 2000 1000 4000 1100 3000 6000 2000 8000 1400 6000 1200 2000 1900
     

    Sample Output

    4 4 5 9 7
     

    题目大意是给定许多老鼠的体重和速度,求得在体重递减情况下速度递增的最长的上升序列。

    几个注意的地方就是首先要严格的递减,出现相同的情况的话也不可以。

    其次输出的话要保存路径,用一个方向数组,每次更新dp值的时候指向下一个,第一个结点指向自己即可

    方法就是按照体重排序,然后求最长的上升子序列长度。

    代码如下:

    /*************************************************************************
    	> File Name: FatMouse_Speed.cpp
    	> Author: Zhanghaoran
    	> Mail: chilumanxi@xiyoulinux.org
    	> Created Time: Sat 24 Oct 2015 04:54:42 PM CST
     ************************************************************************/
    
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <cstdio>
    #include <cstdlib>
    
    using namespace std;
    
    struct Node{
        int w;
        int s;
        int num;
    }mouse[1010];
    
    bool cmp(Node a, Node b){
        if(a.w < b.w)
            return true;
        return false;
    }
    
    int dp[1010];
    int dir[1010];
    int path[1010];
    
    int main(void){
        int we, sp;
        int ans = 0;
        int number = 1;
        memset(dp, 0, sizeof(dp));
        memset(dir, 0, sizeof(dir));
        while(scanf("%d %d", &we, &sp) != EOF){
            mouse[number].w = we;
            mouse[number].s = sp;
            mouse[number].num = number;
            number ++;
        }
        sort(mouse, mouse + number , cmp);
        int Max = 0;
        int f = 0;
        for(int i = 1; i < number; i ++){
            dp[i] = 1;
            dir[i] = i;
            for(int j = 1; j <= i; j ++){
                if(mouse[i].w == mouse[j].w)
                    break;
                if(mouse[i].s < mouse[j].s){
                    if(dp[j] + 1 > dp[i]){
                        dir[i] = j;
                        dp[i] = dp[j] + 1;
                    }
                }
            }
            if(dp[i] > Max){
                Max = dp[i];
                f = i;
            }
        }
    
        printf("%d
    ", Max);
        int t = 0;
        while(1){
            path[t ++] = mouse[f].num;
            if(f == dir[f])
                break;
            f = dir[f];
        }
        while(t --){    
            printf("%d
    ", path[t]);
        }
        return 0;
    }


  • 相关阅读:
    自编码器AutoEncoder,降噪自编码器DAE,稀疏自编码器SAE,变分自编码器VAE 简介
    经验模式分解EMD与集合经验模态分解EEMD
    Adversarial Faces
    网络权重初始化方法 常数初始化、Lecun、Xavier与He Kaiming
    信息熵、交叉熵、KL散度、JS散度、Wasserstein距离
    神经网络前向传播和反向传播公式 详细推导
    Softmax 原理及 Sigmoid和Softmax用于分类的区别
    However, but, yet, while, whereas 表转折的区别; while, whereas区别
    阿里云mysql数据库恢复到本地
    js 14位字符串 转日期
  • 原文地址:https://www.cnblogs.com/chilumanxi/p/5136072.html
Copyright © 2011-2022 走看看