zoukankan      html  css  js  c++  java
  • redis特性

    redis基本数据类型及应用场景 

    支持多种数据类型:

    string(字符串)  

    String数据结构是简单的key-value类型,value其实不仅可以是String,也可以是数字。 
    常规key-value缓存应用;

    list(列表)  

    list就是链表,略有数据结构知识的人都应该能理解其结构。使用Lists结构,我们可以轻松地实现最新消息排行等功能。List的另一个应用就是消息队列,可以利用List的PUSH操作,将任务存在List中,然后工作线程再用POP操作将任务取出进行执行。Redis还提供了操作List中某一段的api,你可以直接查询,删除List中某一段的元素。 
    Redis的list是每个子元素都是String类型的双向链表,可以通过push和pop操作从列表的头部或者尾部添加或者删除元素,这样List即可以作为栈,也可以作为队列。

    消息队列系统 
    使用list可以构建队列系统,使用sorted set甚至可以构建有优先级的队列系统。 
    比如:将Redis用作日志收集器 
    实际上还是一个队列,多个端点将日志信息写入Redis,然后一个worker统一将所有日志写到磁盘。

    hash(散列)   

    Redis hash是一个string类型的field和value的映射表,hash特别适合用于存储对象。 
    存储部分变更的数据,如用户信息等。

    sets (集合)  

    set就是一个集合,集合的概念就是一堆不重复值的组合。利用Redis提供的set数据结构,可以存储一些集合性的数据。set中的元素是没有顺序的。

    sorted set(有序集合)

    和set相比,sorted set增加了一个权重参数score,使得集合中的元素能够按score进行有序排列,比如一个存储全班同学成绩的sorted set,其集合value可以是同学的学号,而score就可以是其考试得分,这样在数据插入集合的时候,就已经进行了天然的排序。可以用sorted set来做带权重的队列,比如普通消息的score为1,重要消息的score为2,然后工作线程可以选择按score的倒序来获取工作任务。让重要的任务优先执行。

    回收策略

      从最近最少使用的数据淘汰,挑选将要过期的数据淘汰。

      volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰

      volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰

      volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰

      allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰

      allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰

      no-enviction(驱逐):禁止驱逐数据

    redis 持久化

    redis提供了不同级别的持久化方式,一种是RDB,一种AOF。可以同时开启两种持久化方式, 在这种情况下, 当redis重启的时候会优先载入AOF文件来恢复原始的数据,因为在通常情况下AOF文件保存的数据集要比RDB文件保存的数据集要完整.

      RDB:在指定的时间间隔能对数据进行快照存储(隔一段时间,把内存里的数据转存在硬盘里的文件)

      优点:

    • RDB是一个非常紧凑的文件,它保存了某个时间点得数据集,非常适用于数据集的备份,比如您可以在每个小时报保存一下过去24小时内的数据,同时每天保存过去30天的数据,这样即使出了问题您也可以根据需求恢复到不同版本的数据集.
    • RDB是一个紧凑的单一文件,很方便传送到另一个远端数据中心或者亚马逊的S3(可能加密),非常适用于灾难恢复.
    • RDB在保存RDB文件时父进程唯一需要做的就是fork出一个子进程,接下来的工作全部由子进程来做,父进程不需要再做其他IO操作,所以RDB持久化方式可以最大化redis的性能.
    • 与AOF相比,在恢复大的数据集的时候,RDB方式会更快一些.

      缺点:

    • 如果您希望在redis意外停止工作(例如电源中断)的情况下丢失的数据最少的话,那么RDB不适合您.虽然您可以配置不同的save时间点(例如每隔5分钟并且对数据集有100个写的操作),是Redis要完整的保存整个数据集是一个比较繁重的工作,您通常会每隔5分钟或者更久做一次完整的保存,万一在Redis意外宕机,您可能会丢失几分钟的数据.
    • RDB 需要经常fork子进程来保存数据集到硬盘上,当数据集比较大的时候,fork的过程是非常耗时的,可能会导致Redis在一些毫秒级内不能响应客户端的请求.如果数据集巨大并且CPU性能不是很好的情况下,这种情况会持续1秒,AOF也需要fork,但是您可以调节重写日志文件的频率来提高数据集的耐久度.

      AOF:每次对服务器写的操作,当服务器重启的时候会重新执行这些命令来恢复原始的数据,AOF命令以redis协议追加保存每次写的操作到文件末尾.Redis还能对AOF文件进行后台重写,使得AOF文件的体积不至于过大.

      优点:

    • 使用AOF 会让您的Redis更加耐久: 您可以使用不同的fsync策略:无fsync,每秒fsync,每次写的时候fsync.使用默认的每秒fsync策略,Redis的性能依然很好(fsync是由后台线程进行处理的,主线程会尽力处理客户端请求),一旦出现故障,您最多丢失1秒的数据.
    • AOF文件是一个只进行追加的日志文件,所以不需要写入seek,即使由于某些原因(磁盘空间已满,写的过程中宕机等等)未执行完整的写入命令,您也也可使用redis-check-aof工具修复这些问题.
    • Redis 可以在 AOF 文件体积变得过大时,自动地在后台对 AOF 进行重写: 重写后的新 AOF 文件包含了恢复当前数据集所需的最小命令集合。 整个重写操作是绝对安全的,因为 Redis 在创建新 AOF 文件的过程中,会继续将命令追加到现有的 AOF 文件里面,即使重写过程中发生停机,现有的 AOF 文件也不会丢失。 而一旦新 AOF 文件创建完毕,Redis 就会从旧 AOF 文件切换到新 AOF 文件,并开始对新 AOF 文件进行追加操作。
    • AOF 文件有序地保存了对数据库执行的所有写入操作, 这些写入操作以 Redis 协议的格式保存, 因此 AOF 文件的内容非常容易被人读懂, 对文件进行分析(parse)也很轻松。 导出(export) AOF 文件也非常简单: 举个例子, 如果您不小心执行了 FLUSHALL 命令, 但只要 AOF 文件未被重写, 那么只要停止服务器, 移除 AOF 文件末尾的 FLUSHALL 命令, 并重启 Redis , 就可以将数据集恢复到 FLUSHALL 执行之前的状态。

      缺点:

      • 对于相同的数据集来说,AOF 文件的体积通常要大于 RDB 文件的体积。
        根据所使用的 fsync 策略,AOF 的速度可能会慢于 RDB 。 在一般情况下, 每秒 fsync 的性能依然非常高, 而关闭 fsync 可以让 AOF 的速度和 RDB 一样快, 即使在高负荷之下也是如此。 不过在处理巨大的写入载入时,RDB 可以提供更有保证的最大延迟时间(latency)。

    参考博客

    https://www.cnblogs.com/jingxiaoniu/p/6783063.html

  • 相关阅读:
    迭代器和生成器
    案例:复制大文件
    案例:使用seek倒查获取日志文件的最后一行
    Leetcode165. Compare Version Numbers比较版本号
    Leetcode137. Single Number II只出现一次的数字2
    Leetcode129. Sum Root to Leaf Numbers求根到叶子节点数字之和
    Leetcode116. Populating Next Right Pointers in Each Node填充同一层的兄弟节点
    Leetcode114. Flatten Binary Tree to Linked List二叉树展开为链表
    Leetcode113. Path Sum II路径总和2
    C++stl中vector的几种常用构造方法
  • 原文地址:https://www.cnblogs.com/chinano1/p/9150098.html
Copyright © 2011-2022 走看看