Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is: [7]
[2, 2, 3]
一开始想到用背包DP做,用DP的好处是速度快。但打印结果比较麻烦。DP比较适合打印总共有几种情况。所以就用DFS来做。
1 class Solution { 2 private: 3 vector<vector<int> > ret; 4 vector<int> a; 5 public: 6 void solve(int dep, int maxDep, int target, vector<int> &cand) 7 { 8 if (target < 0) 9 return; 10 11 if (dep == maxDep) 12 { 13 if (target == 0) 14 { 15 vector<int> res; 16 for(int i = 0; i < maxDep; i++) 17 for(int j = 0; j < a[i]; j++) 18 res.push_back(cand[i]); 19 ret.push_back(res); 20 } 21 return; 22 } 23 24 for(int i = 0; i <= target / cand[dep]; i++) 25 { 26 a[dep] = i; 27 solve(dep + 1, maxDep, target - cand[dep] * i, cand); 28 } 29 } 30 31 vector<vector<int> > combinationSum(vector<int> &candidates, int target) { 32 // Start typing your C/C++ solution below 33 // DO NOT write int main() function 34 sort(candidates.begin(), candidates.end()); 35 36 a.resize(candidates.size()); 37 ret.clear(); 38 if (candidates.size() == 0) 39 return ret; 40 41 solve(0, candidates.size(), target, candidates); 42 43 return ret; 44 } 45 };