Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
DP,f[i][j] = min(f[i-1][j], f[i][j-1]) + a[i][j]
1 class Solution { 2 private: 3 int f[1000][1000]; 4 public: 5 int minPathSum(vector<vector<int> > &grid) { 6 // Start typing your C/C++ solution below 7 // DO NOT write int main() function 8 if (grid.size() == 0 || grid[0].size() == 0) 9 return 0; 10 11 f[0][0] = grid[0][0]; 12 13 for(int i = 1; i < grid.size(); i++) 14 f[i][0] = f[i-1][0] + grid[i][0]; 15 16 for(int i = 1; i < grid[0].size(); i++) 17 f[0][i] = f[0][i-1] + grid[0][i]; 18 19 for(int i = 1; i < grid.size(); i++) 20 for(int j = 1; j < grid[0].size(); j++) 21 f[i][j] = min(f[i-1][j], f[i][j-1]) + grid[i][j]; 22 23 return f[grid.size()-1][grid[0].size()-1]; 24 } 25 };