zoukankan      html  css  js  c++  java
  • 20160730noip模拟赛zld

    image

    codeforces394E

    如果没有在凸多边形内一点的限制,答案肯定是(overline{x},overline{y})

    如果(overline{x},overline{y})不在凸多边形内,那么目标点肯定在凸多边形边上,我们枚举每条边,在每条边上求出距离平方和最小的点,在这些点中求出最小的

    我们可以发现固定一点计算这个平方和不要O(m)的时间,只要维护x坐标平方和,x坐标的和就可以O(1)计算,但是计算起来很鬼畜

    其实最后答案就是凸多边形上,离这个(overline{x},overline{y})最近的点。

    #include<map>
    #include<stack>
    #include<queue>
    #include<cstdio>
    #include<string>
    #include<vector>
    #include<cstring>
    #include<complex>
    #include<iostream>
    #include<assert.h>
    #include<algorithm>
    using namespace std;
    #define inf 1001001001
    #define infll 1001001001001001001LL
    #define FOR0(i,n) for(int (i)=0;(i)<(n);++(i))
    #define FOR1(i,n) for(int (i)=1;(i)<=(n);++(i))
    #define ll long long
    #define dbg(vari) cerr<<#vari<<" = "<<(vari)<<endl
    #define gmax(a,b) (a)=max((a),(b))
    #define gmin(a,b) (a)=min((a),(b))
    #define ios0 ios_base::sync_with_stdio(0)
    #define Ri register int
    #define gc getchar()
    #define il inline
    il int read(){
        bool f=true;
        Ri x=0;char ch;
        while(!isdigit(ch=gc))if(ch=='-')f=false;
        while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=gc;}
        return f?x:-x;
    }
    #define gi read()
    #define FO(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout);
    int n,m;
    #define eps 1e-6
    struct point{
        double x,y;
        il void rd(){
            x=gi;y=gi;
        }
        point operator+(point a) {return (point){x+a.x,y+a.y};}
        point operator-(point a) {return (point){x-a.x,y-a.y};}
        point operator*(double a){return (point){x*a,y*a};}
        point operator/(double a){return (point){x/a,y/a};}
        double operator^(point a){return x*a.y-y*a.x;}//叉积 
        double operator&(point a){return x*a.x+y*a.y;}//点积 
    }p[100001],q[100001];
    //q m个点的 多边形
    //p n个目标点 
    double A,B,C;
    bool inside(point a,point b,point c){//chk if a between b-c
        double A=a-b&c-b;
        double B=c-b&c-b;
        double C=a-b^c-b;
        if (fabs(C)>eps) return 0;
        if (A>-eps&&A<B+eps) return 1;
        return 0;
    }
    int in_hull(point *b,point q) {
        int cnt=0;
        FOR1(i,m){
            if(inside(q,b[i],b[i+1]))    return 2;
            if((b[i]-q^b[i+1]-q)>eps)    cnt++;
        }
        if (cnt==m||!cnt) return 1;
        return 0;
    }
    double dist(point a,point b){
        return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y); 
    }
    int main(){
        FO(point);
        n=gi;
        FOR1(i,n)p[i].rd();
        m=gi;
        FOR1(i,m)q[i].rd();q[0]=q[m];
        double sx,sy,sx2,sy2;sx=sy=sx2=sy2=0;
        FOR1(i,n)sx+=p[i].x,sy+=p[i].y,sx2+=p[i].x*p[i].x,sy2+=p[i].y*p[i].y ;
        if(in_hull(q,(point){sx/n,sy/n})){
            double ans=0.0; 
            FOR1(i,n)ans+=dist((point){sx/n,sy/n},p[i]);
            printf("%.8lf",ans); 
            //做到这里发现不会算不在多边形内的 
        }else{
            sx*=2.0;sy*=2.0;
            double ans=infll;  
            for(int i=0;i<m;i++){  
                int s=i,t=i+1;  
                double dx=q[t].x-q[s].x,dy=q[t].y-q[s].y;  
                double a=q[s].x,b=q[s].y;  
                double A=dx*dx+dy*dy,B=2*a*dx+2*b*dy-sx/n*dx-sy/n*dy;  
                double k=(-B)/(2*A);  
                if(k<0) k=0;  
                if(k>1) k=1;  
                double x=a+dx*k,y=b+dy*k;  
                double ss=n*(x-sx/(2.0*n))*(x-sx/(2.0*n))+sx2-(sx*sx)/(4.0*n)+n*(y-sy/(2.0*n))*(y-sy/(2.0*n))+sy2-(sy*sy)/(4.0*n);  
                ans=min(ans,ss);  
            }  
            printf("%.8lf
    ",ans);  
        }
        //30/07/16 09:38如果WA了就是哪里nm pq反了 
        //30/07/16 09:52写完发现推的不对 
        //
        return 0;
    }

    image

    image

    套用一位大佬的话,这是一道送命题

    题目要求相当于是使每一行都与第一行相等或者完全相反

    那么就大概有了思路

    当n>k时。肯定有没被修改的行,我们枚举这个行在哪

    当n<=k时,枚举第一列的状态,统计答案

    #include<stack>
    #include<queue>
    #include<cstdio>
    #include<string>
    #include<vector>
    #include<cstring>
    #include<complex>
    #include<iostream>
    #include<assert.h>
    #include<algorithm>
    using namespace std;
    #define inf 1001001001
    #define infll 1001001001001001001LL
    #define FOR0(i,n) for(int (i)=0;(i)<(n);++(i))
    #define FOR1(i,n) for(int (i)=1;(i)<=(n);++(i))
    #define ll long long
    #define dbg(vari) cerr<<#vari<<" = "<<(vari)<<endl
    #define gmax(a,b) (a)=max((a),(b))
    #define gmin(a,b) (a)=min((a),(b))
    #define ios0 ios_base::sync_with_stdio(0)
    #define Ri register int
    #define gc getchar()
    #define il inline
    il int read(){
        bool f=true;
        Ri x=0;char ch;
        while(!isdigit(ch=gc))if(ch=='-')f=false;
        while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=gc;}
        return f?x:-x;
    }
    #define gi read()
    #define FO(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout);
    int n,m,k,map[101][101];
    
    int main(){
        FO(table);
        int T=gi;
        while(T--){
            n=gi;m=gi;k=gi;
            FOR1(i,n)FOR1(j,m)map[i][j]=gi;
            if(n>k){
                int res=inf,ans;
                FOR1(i,n){
                    ans=0;
                    FOR1(j,n){
                        int cnt=0;
                        if(i!=j)
                            FOR1(k,m){
                                cnt+=map[i][k]^map[j][k];
                            }    
                        ans+=min(cnt,m-cnt);
                    }
                    gmin(res,ans);
                }
                printf("%d
    ",res>k?-1:res);
            }else{
                bool p[101];int ans=inf;
                FOR0(st,1<<n){
                    FOR1(i,n)p[i]=st&(1<<(i-1));
    //                FOR1(i,n)cout<<p[i];puts("");
                    int res=0;
                    FOR1(i,n)res+=(p[i]^map[i][1]);
                    FOR1(i,m){
                        int cnt=0;
                        FOR1(j,n)cnt+=(p[j]^map[j][i]);
                        res+=min(cnt,n-cnt);
                    }
    //                cout<<res<<endl;
                    gmin(ans,res);
                }
                printf("%d
    ",ans>k?-1:ans);
            }
    //        puts("----------------------------");
        }    
        return 0;
    }

    T3

    image

    还没做

  • 相关阅读:
    OpenCV之设计模式
    ca
    BMP结构详解
    Lucas–Kanade光流算法学习
    卡尔曼
    hash+链表
    文件操作
    查找
    fseek效率
    大家都说3C直连网络,3C网络是指什么呢?
  • 原文地址:https://www.cnblogs.com/chouti/p/5733845.html
Copyright © 2011-2022 走看看