zoukankan      html  css  js  c++  java
  • ThreadPoolExecutor源码浅析

    初始化

    ThreadPoolExecutor重载了多个构造方法,不过最终都是调用的同一个:

    public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory,
                                  RejectedExecutionHandler handler) {
            if (corePoolSize < 0 ||
                maximumPoolSize <= 0 ||
                maximumPoolSize < corePoolSize ||
                keepAliveTime < 0)
                throw new IllegalArgumentException();
            if (workQueue == null || threadFactory == null || handler == null)
                throw new NullPointerException();
            this.acc = System.getSecurityManager() == null ?
                    null :
                    AccessController.getContext();
            this.corePoolSize = corePoolSize;
            this.maximumPoolSize = maximumPoolSize;
            this.workQueue = workQueue;
            this.keepAliveTime = unit.toNanos(keepAliveTime);
            this.threadFactory = threadFactory;
            this.handler = handler;
        }
    

    其中涉及了7个参数:

    • corePoolSize:线程池维护的线程数,及时线程空闲也不关闭,除非设置了allowCoreThreadTimeOut(默认未设置)
    • maximumPoolSize:最大线程数,当需要的线程数超过corePoolSize时就会新建线程,但线程总数不会超过maximumPoolSize
    • keepAliveTime:超出corePoolSize的线程,在用完后空闲时间超过keepAliveTime的时间后就会终止(terminating)
    • TimeUnit unit:keepAliveTime的时间单位
    • BlockingQueue<Runnable> workQueue:当任务无法立即被执行时,会被存储在队列中。不同类型的队列会导致线程池不同的特性,这里不深入讨论(有兴趣可以查看: 队列为 直接提交队列SynchronousQueue,无界队列LinkedBlockingQueue,有界队列ArrayBlockingQueue时不同的特性,参考
    • ThreadFactory threadFactory:创建线程的工厂, 如常见的指定线程名字的工厂方法:new ThreadFactoryBuilder().setNameFormat("Thread-pool-%d").build();
    • RejectedExecutionHandler handler:拒绝策略,当线程数达到maximumPoolSize,且workQueue已经无法存储更多任务时,采用拒绝策略。

    ThreadPoolExecutor为我们提供了4种拒绝策略:

    • AbortPolicy默认策略,抛出异常RejectedExecutionException,告诉调用方已经来不及处理了,调用方需要处理异常和线程线程池来不及执行的任务
    • DiscardPolicy,静默的忽略掉,无一致性要求的可以这么干
    • DiscardOldestPolicy,从队列里抛弃掉最老的任务,无一致性要求的可以这么干
    • CallerRunsPolicy,当任务添加到线程池中被拒绝时,会在线程池当前正在运行的Thread线程中处理被拒绝的任务。可以一定程度缓解当前线程不够的情况,但是如果当前任务执行所需时间不定,有卡住主线程的风险

    再看看CallerRunsPolicy的实现:

     public static class CallerRunsPolicy implements RejectedExecutionHandler {
            /**
             * Creates a {@code CallerRunsPolicy}.
             */
            public CallerRunsPolicy() { }
    
            /**
             * Executes task r in the caller's thread, unless the executor
             * has been shut down, in which case the task is discarded.
             *
             * @param r the runnable task requested to be executed
             * @param e the executor attempting to execute this task
             */
            public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
                if (!e.isShutdown()) {
                    r.run();
                }
            }
        }
    

    可见是通过执行r.run()来占用主线程执行的。

    所有的拒绝策略都是继承RejectedExecutionHandler,所以我们也可以自定义拒绝策略。

    ctl变量

    ctl变量是ThreadPoolExecutor的一个属性,ctl可以理解为control的简写,源码中定义如下:

    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    

    源码中ctl变量的注释中解释了该变量的含义,该变量包含了两个含义,线程池的运行状态 (runState) 和线程池内有效线程的数量 (workerCount)。 ctl用高3位来表示线程池的运行状态, 用低29位来表示线程池内有效线程的数量。在源码中,rs通常表示线程池运行状态 , wc通常表示线程池中有效线程数量, 另外, ctl 也通常会简写作 c。

    再看与ctl相关的几个变量和方法:

        private static final int COUNT_BITS = Integer.SIZE - 3;
        private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    
        // runState is stored in the high-order bits
        private static final int RUNNING    = -1 << COUNT_BITS;
        private static final int SHUTDOWN   =  0 << COUNT_BITS;
        private static final int STOP       =  1 << COUNT_BITS;
        private static final int TIDYING    =  2 << COUNT_BITS;
        private static final int TERMINATED =  3 << COUNT_BITS;
    
        // Packing and unpacking ctl
        private static int runStateOf(int c)     { return c & ~CAPACITY; }
        private static int workerCountOf(int c)  { return c & CAPACITY; }
        private static int ctlOf(int rs, int wc) { return rs | wc; }
    
    • COUNT_BITS,表示用于标记线程数量的位数,32-3=29位
    • CAPACITY, 表示线程池最大可以容纳的线程数量,2^30-1
    • RUNNING,表示运行状态,-1 << COUNT_BITS,前三位的值为111,后29位为0
    • SHUTDOWN,表示不接受新的任务,但是可以处理阻塞队列里的任务。0<< COUNT_BITS,前三位的值为000,后29位为0。调用shutdown()方法会置为该状态。
    • STOP,该状态不接受新的任务,不处理阻塞队列里的任务,中断正在处理的任务。1<< COUNT_BITS,前三位的值为001,后29位为0。调用shutdownNow()方法会置为该状态
    • TIDYING,表示过渡状态,2<< COUNT_BITS,前三位的值为010,后29位为0。此时表示所有的任务都执行完了,当前线程池已经没有有效的线程,并且将要调用terminated方法
    • TERMINATED,表示终止状态,3<< COUNT_BITS,前三位的值为011,后29位为0
    • runStateOf(int c) ,获取线程池状态,这里c为ctl变量,CAPACITY取反结果是前三位为1,后29位为0,与ctl与操作即可得到状态
    • workerCountOf(int c), 与runStateOf(int c) 相反取后29位,即线程数量
    • ctlOf(int rs, int wc),基于状态和线程数量构造一个ctl变量

    对于状态可以简单理解为:RUNNING为-1,SHUTDOWN为0,STOP为1,TIDYING为2,TERMINATED为3。RUNNING变为SHUTDOWN或者STOP后,再变为TIDYING,再变为TERMINATED。

    添加任务

    ThreadPoolExecutor继承于AbstractExecutorService:

    public class ThreadPoolExecutor extends AbstractExecutorService 
    

    AbstractExecutorService提供了最常用的三个添加任务到线程成的方法:

    public Future<?> submit(Runnable task) {
            if (task == null) throw new NullPointerException();
            RunnableFuture<Void> ftask = newTaskFor(task, null);
            execute(ftask);
            return ftask;
        }
    
    public <T> Future<T> submit(Runnable task, T result) {
            if (task == null) throw new NullPointerException();
            RunnableFuture<T> ftask = newTaskFor(task, result);
            execute(ftask);
            return ftask;
        }
    
    public <T> Future<T> submit(Callable<T> task) {
            if (task == null) throw new NullPointerException();
            RunnableFuture<T> ftask = newTaskFor(task);
            execute(ftask);
            return ftask;
        }
    

    可以看到最终它们都是调用了execute方法,ThreadPoolExecutor中execute的实现如下:

    public void execute(Runnable command) {
            if (command == null)
                throw new NullPointerException();
            /*
             * Proceed in 3 steps:
             *
             * 1. If fewer than corePoolSize threads are running, try to
             * start a new thread with the given command as its first
             * task.  The call to addWorker atomically checks runState and
             * workerCount, and so prevents false alarms that would add
             * threads when it shouldn't, by returning false.
             *
             * 2. If a task can be successfully queued, then we still need
             * to double-check whether we should have added a thread
             * (because existing ones died since last checking) or that
             * the pool shut down since entry into this method. So we
             * recheck state and if necessary roll back the enqueuing if
             * stopped, or start a new thread if there are none.
             *
             * 3. If we cannot queue task, then we try to add a new
             * thread.  If it fails, we know we are shut down or saturated
             * and so reject the task.
             */
            int c = ctl.get();
            if (workerCountOf(c) < corePoolSize) {
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }
            if (isRunning(c) && workQueue.offer(command)) {
                int recheck = ctl.get();
                if (! isRunning(recheck) && remove(command))
                    reject(command);
                else if (workerCountOf(recheck) == 0)
                    addWorker(null, false);
            }
            else if (!addWorker(command, false))
                reject(command);
        }
    

    源码中的这段注释详细的介绍了这段代码的作用,该方法考虑三种情况:

    1. 如果当前存活thread的数量小于corePoolSize,则尝试开启一个新的线程。如果创建成功则返回;如果创建失败,则继续后续步骤;

    2. 如果步骤1中创建失败或者thread数量>=corePoolSize,那会进入该步骤。该步骤判断线程池处于运行状态,则尝试将新任务加入队列。

      1. 如果线程池处于运行状态,且加入队列成功,则再次判断线程池是否处于运行状态(防止在执行workQueue.offer(command)的时候线程池状态改变)。如果线程池状态改变则remove刚刚入队的任务,并执行拒绝操作。如果在运行态,但是线程数为0,则添加一个worker。
      2. 如果线程池不处于运行状态加入队列失败则进入下一步骤
    3. 如果线程池不处于运行状态或者处于运行状态,但是thread数量>=corePoolSize且workQueue已满,则会进入该步骤。该步骤会尝试创建一个新的线程来执行任务。如果线程池线程总数达到maximumPoolSize 或者 创建线程时线程池状态变化不再处于运行状态,则会创建失败。

    在上面的代码中主要是通过addWorker方法添加新任务的,下面我们就来分析下这个方法的实现

    addWorker方法

    源码如下:

    private boolean addWorker(Runnable firstTask, boolean core) {
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                //rs >= SHUTDOWN,状态不为RUNNING
                //并且
                //rs != SHUTDOWN || firstTask != null || workQueue.isEmpty()
                //一下几种情况
                //1. 状态不为RUNNING和SHUTDOWN,
                //2. 或者 状态为SHUTDOWN且task不为null,
                //3. 或者 状态为SHUTDOWN, task为null, workQueue 为空,
                //则返回false,添加失败
                if (rs >= SHUTDOWN &&
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;
    			//判断是否超过线程数量的限制,
                for (;;) {
                    int wc = workerCountOf(c);
                    if (wc >= CAPACITY ||
                        wc >= (core ? corePoolSize : maximumPoolSize))
                        return false;
                    //未超过限制则尝试把线程数加1,成功跳出retry循环
                    if (compareAndIncrementWorkerCount(c))
                        break retry;
                    //线程数加1失败则说明ctl有变化(状态或数量), 重新获取
                    c = ctl.get();  // Re-read ctl
                    //如果是状态变化则循环外层,反之循环内层
                    if (runStateOf(c) != rs) 
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
            }
    
            boolean workerStarted = false;
            boolean workerAdded = false;
            Worker w = null;
            try {
                w = new Worker(firstTask);
                //从Worker构造方法可以看到 
                //this.firstTask = firstTask;
                //this.thread = getThreadFactory().newThread(this);
                //故此firstTask为null的时候, w.thread不为null
                final Thread t = w.thread;
                if (t != null) {
                    final ReentrantLock mainLock = this.mainLock;
                    mainLock.lock();
                    try {
                        // Recheck while holding lock.
                        // Back out on ThreadFactory failure or if
                        // shut down before lock acquired.
                        int rs = runStateOf(ctl.get());
    
                        if (rs < SHUTDOWN ||
                            (rs == SHUTDOWN && firstTask == null)) {
                            if (t.isAlive()) // precheck that t is startable
                                throw new IllegalThreadStateException();
                            workers.add(w);
                            int s = workers.size();
                            if (s > largestPoolSize)
                                largestPoolSize = s;
                            workerAdded = true;
                        }
                    } finally {
                        mainLock.unlock();
                    }
                    if (workerAdded) {
                        t.start();  //成功添加worker后,启动线程
                        workerStarted = true;
                    }
                }  //end of if (t != null) 
            } finally {
                //worker启动失败则移除worker, 数量减一
                if (! workerStarted)
                    addWorkerFailed(w);
            }
            return workerStarted;
        }
    

    execute方法中在三个地方用不用的参数调用了addWorker方法:

    1. addWorker(command, true)
    2. addWorker(null, false)
    3. addWorker(command, false)

    addWorker有两个参数:Runnable firstTaskboolean core,前者表示要执行的任务,后者表示线程数量限制的类型(基于corePoolSize还是maximumPoolSize)。1和3 是类似的,唯一的不同就是线程数的限制不同,所以这里主要分析firstTask为null 和 不为null 的区别。

    方法中retry: for (;;) {...}的内容主要是用于判断是否线程池已经关闭,以及线程数量是否超过限制。若未关闭,未超过限制则把线程数加1。firstTask为null的时候, w.thread不为null,所以firstTask是否在addWorker中还是没有区别,那只能更进一步看看worker里对firstTask是如何处理的。

    worker实现

    线程池中的任务都是通过worker来代理的。

    private final class Worker
            extends AbstractQueuedSynchronizer
            implements Runnable{
            
            /** Thread this worker is running in.  Null if factory fails. */
            final Thread thread;
            /** Initial task to run.  Possibly null. */
            Runnable firstTask;
            /** Per-thread task counter */
            volatile long completedTasks;
            
            //后续代码此处省略...........................
    }
    

    Worker继承与AQS,实现Runable接口,本身是线程类,且具有AQS的特性。

    看worker构造方法:

    Worker(Runnable firstTask) {
                setState(-1); // inhibit interrupts until runWorker
                this.firstTask = firstTask;
                //Worker实现了Runnable所以,
                //所以this.thread.start(),就是用线程执行worker的run方法
                this.thread = getThreadFactory().newThread(this);
            }
    

    setState(-1)为AQS的方法,把状态位设置成-1,这样任何线程都不能得到Worker的锁,除非调用了unlock方法。这个unlock方法会在runWorker方法中一开始就调用,这是为了确保Worker构造出来之后,没有任何线程能够得到它的锁,除非调用了runWorker之后,其他线程才能获得Worker的锁。

    再看其run方法:

            /** Delegates main run loop to outer runWorker  */
            public void run() {
                runWorker(this);
            }
    

    runWorker(this)不是worker的方法,是ThreadPoolExecutor的方法,也是执行任务的方法。

    执行任务

    又回到了ThreadPoolExecutor中,runWorker实现如下:

    final void runWorker(Worker w) {
            Thread wt = Thread.currentThread();
            Runnable task = w.firstTask;
            w.firstTask = null;
            w.unlock(); // allow interrupts,创建worker时状态设置为-1了,此时设置为1
            boolean completedAbruptly = true; //task是否意外终止,意外终止为true,反之false
            try {
                //优先运行初始化时的firstTask, 如果firstTask已经执行了则从队列取
                while (task != null || (task = getTask()) != null) {
                    w.lock();  //获取到task后锁定,独占worker,保证线程安全
                    // If pool is stopping, ensure thread is interrupted;
                    // if not, ensure thread is not interrupted.  This
                    // requires a recheck in second case to deal with
                    // shutdownNow race while clearing interrupt
                    if ((runStateAtLeast(ctl.get(), STOP) ||
                         (Thread.interrupted() &&
                          runStateAtLeast(ctl.get(), STOP))) &&
                        !wt.isInterrupted())
                        wt.interrupt();
                    try {
                        beforeExecute(wt, task); //空方法,用于子类扩展
                        Throwable thrown = null;
                        try {
                            task.run();
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                            thrown = x; throw x;
                        } catch (Throwable x) {
                            thrown = x; throw new Error(x);
                        } finally {
                            afterExecute(task, thrown);//空方法,用于子类扩展
                        }
                    } finally {
                        task = null;
                        w.completedTasks++;
                        w.unlock();
                    }
                }
                completedAbruptly = false;
            } finally {
                //移除执行完成的worker
                processWorkerExit(w, completedAbruptly);
            }
        }
    

    到此我们终于能回答前面的问题了,addWorker(Runnable firstTask, boolean core) 中firstTask为null不不为null的区别:

    • 为null,addWorker(null, core) 表示创建一个worker,执行队列中的task
    • 不为null,addWorker(firstTask, core) 表示创建一个worker,先执行firstTask,再执行队列中的task

    他们都新增了一个线程,一个是直接执行队列里的任务,一个先执行当前任务,再执行队列任务。

    下面继续分析runWorker。

    线程池在runWorker方法中,通过while (task != null || (task = getTask()) != null)不断从队列中取出任务执行,等待队列中任务执行完成后,调用processWorkerExit(w, completedAbruptly),移除当前worker。问题来了,这么看起来线程池中的线程只有在队列不为空的时候才得以复用,这不科学啊,那问题在哪儿?反复看代码,唯一忽略的掉的地方就是getTask()了,看到这个方法的时候,想当然的认为是简单的获取队列中的任务,那么我们来看一下它的具体实现:

    private Runnable getTask() {
            boolean timedOut = false; // Did the last poll() time out?
    
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary. 线程池是否已经关闭
                if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                    decrementWorkerCount();
                    return null;
                }
    
                int wc = workerCountOf(c);
    
                // Are workers subject to culling?
                //表示worker是否需要回收
                //allowCoreThreadTimeOut=true时core线程超时也回收, 默认为false
                //所以默认情况下timed表示 wc > corePoolSize
                boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
    
                if ((wc > maximumPoolSize || (timed && timedOut))
                    && (wc > 1 || workQueue.isEmpty())) {
                    if (compareAndDecrementWorkerCount(c))
                        return null;
                    continue;
                }
    
                try {
                    Runnable r = timed ?
                        //线程需要回收;尝试取队列中的任务,超过keepAliveTime还未取到返回null
                        workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                        //线程无需回收;取队列中的任务, 队列中没有任务则一直等到有任务
                        workQueue.take();
                    if (r != null)
                        return r;
                    timedOut = true;
                } catch (InterruptedException retry) {
                    timedOut = false;
                }
            }
        }
    

    上面代码可以看出getTask()确实是取任务,不过也兼任了 线程池在运行态取不到数据时 park线程等待线程直到超时(parkNanos) 的工作,我们查看线程无需回收时park在取队列任务的线程堆栈如下:

    "pool-1-thread-1@731" prio=5 tid=0xd nid=NA waiting
      java.lang.Thread.State: WAITING
    	  at sun.misc.Unsafe.park(Unsafe.java:-1)
    	  at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
    	  at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:2039)
    	  at java.util.concurrent.ArrayBlockingQueue.take(ArrayBlockingQueue.java:403)
    	  at java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:1074)
    	  at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1134)
    	  at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    	  at java.lang.Thread.run(Thread.java:748)
    

    线程处于waiting状态,从堆栈中可以看到at java.util.concurrent.ArrayBlockingQueue.take(ArrayBlockingQueue.java:403),正是被workQueue.take() park住了。如此一来worker执行完当前线程之后,如果取不到新的任务就会一直处在park状态,直到队列中有新的任务进入。以ArrayBlockingQueue为例看,看其takeenqueue实现:

     /** Condition for waiting takes */
     private final Condition notEmpty;
    
    public E take() throws InterruptedException {
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();
            try {
                while (count == 0)
                    notEmpty.await();   //park 线程
                return dequeue();
            } finally {
                lock.unlock();
            }
        }
    
    private void enqueue(E x) {
            // assert lock.getHoldCount() == 1;
            // assert items[putIndex] == null;
            final Object[] items = this.items;
            items[putIndex] = x;
            if (++putIndex == items.length)
                putIndex = 0;
            count++;
            notEmpty.signal();  //唤起线程
        }
    

    关闭连接池

    ThreadPoolExecutor提供了两个关闭的方法:

    • shutdown(),关闭线程池,不再接受新的任务,但是会处理完当前线程和队列中的线程
    • shutdownNow() ,关闭线程池,不再接受新的任务,且试图停止所有正在执行的线程,并不再处理还在池队列中等待的任务。但是它试图终止线程的方法是通过调用Thread.interrupt()方法来实现的,但是interrupt的作用有限,运行中的线程不一定能成功退出(具体原因参考)。

    下面看下实现:

    public void shutdown() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                checkShutdownAccess();
                advanceRunState(SHUTDOWN);  //状态设置为SHUTDOWN
                interruptIdleWorkers();  //中断空闲线程
                onShutdown(); // hook for ScheduledThreadPoolExecutor,这里为空方法
            } finally {
                mainLock.unlock();
            }
            tryTerminate();
        }
        
    public List<Runnable> shutdownNow() {
            List<Runnable> tasks;
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                checkShutdownAccess();
                advanceRunState(STOP);  //状态设置为STOP
                interruptWorkers();  //中断全部线程
                tasks = drainQueue();  //返回队列中未执行的任务
            } finally {
                mainLock.unlock();
            }
            tryTerminate();
            return tasks;
        }
    

    可以看到shutdown和shutdownNow的实现大致相同,不同的地方有两个,

    • 前者关闭时将状态设置为SHUTDOWN,后者为STOP
    • 前者interruptIdleWorkers(),只中断空闲线程;后者interruptWorkers(),中断全部 线程,返回队列中未执行的任务

    设置状态的源码:

    private void advanceRunState(int targetState) {
            for (;;) {
                int c = ctl.get();
                if (runStateAtLeast(c, targetState) ||
                    ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
                    break;
            }
        }
    

    interruptIdleWorkers():

    private void interruptIdleWorkers() {
            interruptIdleWorkers(false);
        }
    
    private void interruptIdleWorkers(boolean onlyOne) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                for (Worker w : workers) {
                    Thread t = w.thread;
                    //如果线程未被中断,且获取work的锁成功(说明空闲),则中断线程
                    if (!t.isInterrupted() && w.tryLock()) {
                        try {
                            t.interrupt();
                        } catch (SecurityException ignore) {
                        } finally {
                            w.unlock();
                        }
                    }
                    if (onlyOne)
                        break;
                }
            } finally {
                mainLock.unlock();
            }
        }
    

    interruptWorkers():

    //ThreadPoolExecutor
    private void interruptWorkers() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                //中断全部worker线程
                for (Worker w : workers)
                    w.interruptIfStarted();
            } finally {
                mainLock.unlock();
            }
        }
    
    //worker
    void interruptIfStarted() {
                Thread t;
        		//若worker已经启动(未启动时为-1),且thread不为null,且未被中断
        		//也就是说线程还存活着,那就发送中断信号
                if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    }
                }
            }
    

    tryTerminate()除了在关闭连接池时调用,还在其它地方调用了,这里只分析在关闭连接池时它都做了什么:

    final void tryTerminate() {
            for (;;) {
                int c = ctl.get();
                //关闭连接池调用该方法第一次调用时:
                //状态为SHUTDOWN或STOP,都小于TIDYING,故前两条件都不满足
                //第三个条件,队列不为空的时候直接返回了,
                //如果为shutdown()则可能队列不为空,可能满足条件直接返回,也可能不满足
                //如果为shutdownNow()则队列被清空,不满足
                if (isRunning(c) ||
                    runStateAtLeast(c, TIDYING) ||
                    (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
                    return;
                //如果worker数量不为0则执行interruptIdleWorkers(true)
                //然后直接返回,完成该方法
                if (workerCountOf(c) != 0) { // Eligible to terminate
                    interruptIdleWorkers(ONLY_ONE);
                    return;
                }
    
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    //尝试设置状态为TIDYING,worker数量为0,
                    //期间ctl若未变动,则成功
                    if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
                        try {
                            terminated(); //空方法用于子类扩展
                        } finally {
                            //设置状态为TERMINATED
                            ctl.set(ctlOf(TERMINATED, 0));
                            //唤醒调用了awaitTermination(long timeout, TimeUnit unit)的线程
                            //awaitTermination中调用了
                            termination.signalAll();
                        }
                        return;
                    }
                } finally {
                    mainLock.unlock();
                }
                // else retry on failed CAS
            }
        }
    

    tryTerminate()在关闭连接池时的做的判断可以简单理解为

      • 如果队列不为空直接返回
      • 存活worker数量不为0则直接返回
      • 设置状态为TIDYING,TERMINATED

    所以无论是shutdown还是shutdownNow都不会阻塞线程,且不保证worker已经全部关闭。

    参考

    Java线程池ThreadPoolExecutor源码分析
    csdn-Java 线程池 ThreadPoolExecutor 源码分析
    详细分析Java中断机制
    谈谈 Java 线程状态相关的几个方法

  • 相关阅读:
    SpringMVC请求静态资源
    Spring视图和视图解析器
    @ModelAttribute运行流程
    SpringMVC模型数据处理
    SpringMVC简单映射请求参数介绍
    队列和栈的问题
    非比较排序——计数排序、基数排序、桶排序
    递归
    对数器的使用
    常见的比较排序
  • 原文地址:https://www.cnblogs.com/chrischennx/p/9600156.html
Copyright © 2011-2022 走看看