zoukankan      html  css  js  c++  java
  • 机器视觉实验二

    一、作业信息
    | 博客班级 | https://edu.cnblogs.com/campus/ahgc/machinelearning/ |
    |作业要求 | https://edu.cnblogs.com/campus/ahgc/machinelearning/homework/12004|
    | 学号 | 3180701239 |
    二、实验目的
    1.理解K-近邻算法原理,能实现算法K近邻算法;
    2.掌握常见的距离度量方法;
    3.掌握K近邻树实现算法;
    4.针对特定应用场景及数据,能应用K近邻解决实际问题。
    三、实验内容
    1.实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。
    2.实现K近邻树算法;
    3.针对iris数据集,应用sklearn的K近邻算法进行类别预测。
    4.针对iris数据集,编制程序使用K近邻树进行类别预测。
    四、实验报告要求
    1.对照实验内容,撰写实验过程、算法及测试结果;
    2.代码规范化:命名规则、注释;
    3.分析核心算法的复杂度;
    4.查阅文献,讨论K近邻的优缺点;
    5.举例说明K近邻的应用场景。
    五、实验过程
    K近邻法是基本且简单的分类与回归方法。K近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的K个最近邻训练实例点,然后利用这K个训练实例点的类的多数来预测输入实例点的类。

    ·p1= 1 曼哈顿距离
    ·p2= 2 欧氏距离
    ·p3= inf 闵式距离minkowski_distance
    import math
    from itertools import combinations
    def L(x, y, p=2):
    # x1 = [1, 1], x2 = [5,1]
    if len(x) == len(y) and len(x) > 1:
    sum = 0
    for i in range(len(x)):
    sum += math.pow(abs(x[i] - y[i]), p)
    return math.pow(s#2. 数据准备
    x1 = [1, 1]
    x2 = [5, 1]
    x3 = [4, 4]

    %#3.输入数据
    for i in range(1, 5):
    r = {'1-{}'.format(c):L(x1, c, p = i) for c in [x2, x3]}#字典

    print(min(zip(r.values(), r.keys())))um, 1 / p)
    else:
        return 0
    

    结果:

    %#2、实现K近邻树算法
    %#k阶近邻算法(少数服从多数)
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt

    %matplotlib inline

    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from collections import Counter

    1. 载入数据
      iris = load_iris()
      df = pd.DataFrame(iris.data, columns=iris.feature_names)
      df['label'] = iris.target
      df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
      data = np.array(df.iloc[:100, [0, 1, -1]])
      plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
      plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
      plt.xlabel('sepal length')
      plt.ylabel('sepal width')
      plt.legend()
      结果:

    2. 构造模型
      class KNN:
      def init(self, X_train, y_train, n_neighbors = 3, p = 2):
      self.n = n_neighbors
      self.p = p
      self.X_train = X_train
      self.y_train = y_train

      def predict(self,X):
      knn_list = []
      for i in range(self.n):
      dist = np.linalg.norm(X-self.X_train[i],ord=self.p)
      knn_list.append((dist,self.y_train[i]))
      for i in range(self.n,len(self.X_train)):
      max_index = knn_list.index(max(knn_list,key=lambda x : x[0]))
      dist = np.linalg.norm(X-self.X_train[i],ord=self.p)
      if knn_list[max_index][0] > dist:
      knn_list[max_index] = (dist,self.y_train[i])
      knn = [k[-1] for k in knn_list]
      count_pairs = Counter(knn)
      return count_pairs.most_common(1)[0][0]

      def score(self, X_test, y_test):
      right_count = 0
      n = 10
      for X, y in zip(X_test, y_test):
      label = self.predict(X)
      if label == y:
      right_count += 1
      return right_count / len(X_test)
      clf = KNN(X_train, y_train)
      clf.score(X_test, y_test)
      结果:

      test_point = [6.0, 3.0]
      print('Test Point: {}'.format(clf.predict(test_point)))
      结果:

    plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
    plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
    plt.plot(test_point[0], test_point[1], 'bo', label='test_point')
    plt.xlabel('sepal length')
    plt.ylabel('sepal width')
    plt.legend()
    结果:

    3、针对iris数据集,应用sklearn的K近邻算法进行类别预测
    scikit - learn
    sklearn.neighbors.KNeighborsClassifier
    n_neighbors: 临近点个数
    p: 距离度量
    algorithm: 近邻算法,可选{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}
    weights: 确定近邻的权重
    from sklearn.neighbors import KNeighborsClassifier
    clf_sk = KNeighborsClassifier()
    clf_sk.fit(X_train, y_train)
    结果:

    clf_sk.score(X_test, y_test)
    结果:

    4、针对iris数据集,编制程序使用K近邻树进行类别预测
    (1)构造kd树
    kd-tree 每个结点中主要包含的数据如下:
    class KdNode(object):
    def init(self, dom_elt, split, left, right):
    self.dom_elt = dom_elt#结点的父结点
    self.split = split#划分结点
    self.left = left#做结点
    self.right = right#右结点

    class KdTree(object):
    def init(self, data):
    k = len(data[0])#数据维度
    print("创建结点")
    print("开始执行创建结点函数!!!")
    def CreateNode(split, data_set):
    #print(split,data_set)
    if not data_set:#数据集为空
    return None
    #print("进入函数!!!")
    data_set.sort(key=lambda x:x[split])#开始找切分平面的维度
    #print("data_set:",data_set)
    split_pos = len(data_set)//2 #取得中位数点的坐标位置(求整)
    median = data_set[split_pos]
    split_next = (split+1) % k #(取余数)取得下一个节点的分离维数
    return KdNode(
    median,
    split,
    CreateNode(split_next, data_set[:split_pos]),#创建左结点
    CreateNode(split_next, data_set[split_pos+1:]))#创建右结点
    #print("结束创建结点函数!!!")
    self.root = CreateNode(0, data)#创建根结点

    KDTree的前序遍历
    def preorder(root):
    print(root.dom_elt)
    if root.left:
    preorder(root.left)
    if root.right:
    preorder(root.right)
    (2)搜索kd树

    KDTree的前序遍历
    def preorder(root):
    print(root.dom_elt)
    if root.left:
    preorder(root.left)
    if root.right:
    preorder(root.right)

    from math import sqrt
    from collections import namedtuple
    定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
    result = namedtuple("Result_tuple",
    "nearest_point nearest_dist nodes_visited")

    搜索开始
    def find_nearest(tree, point):
    k = len(point)#数据维度

    def travel(kd_node, target, max_dist):
        if kd_node is None:
            return result([0]*k, float("inf"), 0)#表示数据的无
        
        nodes_visited = 1
        s = kd_node.split #数据维度分隔
        pivot = kd_node.dom_elt #切分根节点
        
        if target[s] <= pivot[s]:
            nearer_node = kd_node.left #下一个左结点为树根结点
            further_node = kd_node.right #记录右节点
        else: #右面更近
            nearer_node = kd_node.right
            further_node = kd_node.left
        temp1 = travel(nearer_node, target, max_dist)
        
        nearest = temp1.nearest_point# 得到叶子结点,此时为nearest
        dist = temp1.nearest_dist #update distance
        
        nodes_visited += temp1.nodes_visited
        print("nodes_visited:", nodes_visited)
        if dist < max_dist:
            max_dist = dist
        
        temp_dist = abs(pivot[s]-target[s])#计算球体与分隔超平面的距离
        if max_dist < temp_dist:
            return result(nearest, dist, nodes_visited)
        # -------
        #计算分隔点的欧式距离
        
        temp_dist = sqrt(sum((p1-p2)**2 for p1, p2 in zip(pivot, target)))#计算目标点到邻近节点的Distance
        
        if temp_dist < dist:
            
            nearest = pivot #更新最近点
            dist = temp_dist #更新最近距离
            max_dist = dist #更新超球体的半径
            print("输出数据:" , nearest, dist, max_dist)
            
        # 检查另一个子结点对应的区域是否有更近的点
        temp2 = travel(further_node, target, max_dist)
    
        nodes_visited += temp2.nodes_visited
        if temp2.nearest_dist < dist:  # 如果另一个子结点内存在更近距离
            nearest = temp2.nearest_point  # 更新最近点
            dist = temp2.nearest_dist  # 更新最近距离
    
        return result(nearest, dist, nodes_visited)
    
    return travel(tree.root, point, float("inf"))  # 从根节点开始递归
    

    (3)例3.2

    data= [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
    kd=KdTree(data)
    preorder(kd.root)
    结果:

    from time import clock
    from random import random

    产生一个k维随机向量,每维分量值在0~1之间
    def random_point(k):
    return [random()for_inrange(k)]

    产生n个k维随机向量
    def random_points(k, n):
    return [random_point(k) for_inrange(n)]
    ret=find_nearest(kd, [3,4.5])
    print (ret)
    结果:

    N=400000
    t0=clock()
    kd2=KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树
    ret2=find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最近的点
    t1=clock()print ("time: ",t1-t0, "s")
    print (ret2)
    结果:

    五、实验小结
    了解了曼哈顿距离、欧氏距离、闵式距离算法

  • 相关阅读:
    Eclipse快捷键大全
    如何查看JDK_API 2019.2.23
    JXL、POI操作Excel
    Eclipse 将builder文件夹下的classes文件改路径到WEB-INF下,以及常用快捷键
    系统分盘
    U盘被识别为其他设备(显示U盘图标但是不显示盘符)的解决办法
    Oracle+jsp+Servlet的员工表的简单增删改查
    2019年3月8日09:06:02 mybatis 一对多
    linux 协议栈分享
    fib
  • 原文地址:https://www.cnblogs.com/chunian-824/p/14797835.html
Copyright © 2011-2022 走看看