zoukankan      html  css  js  c++  java
  • MXNET:多层感知机

    从零开始

    前面了解了多层感知机的原理,我们来实现一个多层感知机。

    # -*- coding: utf-8 -*-
    from mxnet import init
    
    from mxnet import ndarray as nd
    from mxnet.gluon import loss as gloss
    import gb
    
    # 定义数据源
    batch_size = 256
    train_iter, test_iter = gb.load_data_fashion_mnist(batch_size)
    
    # 定义模型参数
    num_inputs = 784
    num_outputs = 10
    num_hiddens = 256
    
    W1 = nd.random.normal(scale=0.01, shape=(num_inputs, num_hiddens))
    b1 = nd.zeros(num_hiddens)
    W2 = nd.random.normal(scale=0.01, shape=(num_hiddens, num_outputs))
    b2 = nd.zeros(num_outputs)
    params = [W1, b1, W2, b2]
    
    for param in params:
        param.attach_grad()
    
    # 定义激活函数
    def relu(X):
        return nd.maximum(X, 0)
    
    # 定义模型
    def net(X):
        X = X.reshape((-1, num_inputs))
        H = relu(nd.dot(X, W1) + b1)
        return nd.dot(H, W2) + b2
    
    # 定义损失函数
    loss = gloss.SoftmaxCrossEntropyLoss()
    
    # 训练模型
    num_epochs = 5
    lr = 0.5
    gb.train_cpu(net, train_iter, test_iter, loss, num_epochs, batch_size,
                 params, lr)
    

    添加隐层后,模型的性能大幅提升

    # output
    epoch 1, loss 0.5029, train acc 0.852, test acc 0.934
    epoch 2, loss 0.2000, train acc 0.943, test acc 0.956
    epoch 3, loss 0.1431, train acc 0.959, test acc 0.964
    epoch 4, loss 0.1138, train acc 0.967, test acc 0.968
    epoch 5, loss 0.0939, train acc 0.973, test acc 0.973
    

    在定义模型参数和定义模型步骤,仍然有一些繁琐。

    使用Gluon

    # -*- coding: utf-8 -*-
    from mxnet import init
    
    from mxnet import ndarray as nd
    from mxnet.gluon import loss as gloss
    import gb
    
    # 定义数据源
    batch_size = 256
    train_iter, test_iter = gb.load_data_fashion_mnist(batch_size)
    
    # 定义模型
    from mxnet.gluon import nn
    net = nn.Sequential()
    net.add(nn.Dense(256, activation='relu'))
    net.add(nn.Dense(10))
    net.add(nn.Dense(10))
    net.initialize(init.Normal(sigma=0.01))
    
    # 定义损失函数
    loss = gloss.SoftmaxCrossEntropyLoss()
    
    # 训练模型
    from mxnet import gluon
    trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.5})
    num_epochs = 5
    gb.train_cpu(net, train_iter, test_iter, loss, num_epochs, batch_size,
                 None, None, trainer)
    
    # output
    epoch 1, loss 1.3065, train acc 0.525, test acc 0.814
    epoch 2, loss 0.2480, train acc 0.928, test acc 0.950
    epoch 3, loss 0.1442, train acc 0.958, test acc 0.961
    epoch 4, loss 0.1060, train acc 0.969, test acc 0.971
    epoch 5, loss 0.0807, train acc 0.976, test acc 0.973
    
  • 相关阅读:
    阿里云如何打破Oracle迁移上云的壁垒
    第三代DRDS分布式SQL引擎全新发布
    玩转MaxCompute studio SQL编辑器
    如何在阿里云上安全的存放您的配置
    阿里云E-HPC联合安世亚太、联科集团共建云超算生态
    阿里云弹性裸金属服务器-神龙架构(X-Dragon)揭秘
    从保障淘宝到全球市场“第一阵营”,阿里云的DDoS防护之路走了多远?
    飞天技术汇“2018云栖大会·上海峰会”专场,等你加入
    Yeoman:Web 应用开发流程与工具—AngularJS—Bootstrap—js
    【codeforces 550A】Two Substrings
  • 原文地址:https://www.cnblogs.com/houkai/p/9520970.html
Copyright © 2011-2022 走看看