zoukankan      html  css  js  c++  java
  • POJ 3613 [ Cow Relays ] DP,矩阵乘法

    解题思路

    首先考虑最暴力的做法。对于每一步,我们都可以枚举每一条边,然后更新每两点之间经过(k)条边的最短路径。但是这样复杂度无法接受,我们考虑优化。

    由于点数较少(其实最多只有(200)个点),(N)较大,考虑优化(N)。我们发现,其实可以直接从经过(i)条边的最短路和经过(j)条边的最短路推出经过(i+j)条边的最短路。这样的话,我们可以把每两点间的最短路保存下来,然后用类似于矩阵快速幂的做法就可以了。

    最后为了不超时,我们需要将点的编号离散。最后时间复杂度是(O(T^3logN))

    参考程序

    #include <cstdio>
    #include <cstring>
    #include <map>
    #define LL long long
    using namespace std;
    
    const LL INF = 2147483647;
    const LL MaxT = 110, MaxPoint = 210;
    LL N, T, S, E;
    LL Length[ MaxT ], I1[ MaxT ], I2[ MaxT ];
    LL Num;
    
    namespace myHash {	
        LL Reflection[ 1010 ];
        map< LL, LL > Map;
        
        void Hash() {
            memset( Reflection, 0, sizeof( Reflection ) );
            Map.clear();
            for( LL i = 1; i <= T; ++i ) {
                if( Map.find( I1[ i ] ) == Map.end() ) Map[ I1[ i ] ] = 1;
                if( Map.find( I2[ i ] ) == Map.end() ) Map[ I2[ i ] ] = 1;
            }
            LL Last = 0;
            for( map< LL, LL >::iterator it = Map.begin(); it != Map.end(); ++it )
                Reflection[ ( *it ).first ] = ++Last;
            Num = Last;
            for( LL i = 1; i <= T; ++i ) {
                I1[ i ] = Reflection[ I1[ i ] ];
                I2[ i ] = Reflection[ I2[ i ] ];
            }
            return;
        }
    }//myHash
    
    struct Matrix {
        LL A[ MaxPoint ][ MaxPoint ];
        void Clear() { 
            for( LL i = 1; i <= 200; ++i ) 
                for( LL j = 1; j <= 200; ++j ) 
                    A[ i ][ j ] = INF;
            return;
        }
        Matrix operator * ( const Matrix Other ) const {
            Matrix Ans;
            Ans.Clear();
            for( LL i = 1; i <= Num; ++i )
                for( LL j = 1; j <= Num; ++j ) 
                    for( LL k = 1; k <= Num; ++k )
                        Ans.A[ i ][ j ] = min( Ans.A[ i ][ j ], A[ i ][ k ] + Other.A[ k ][ j ] );
            return Ans;
        }
    };
    
    Matrix Basic, Ans;
    
    void Init() {
        Basic.Clear();
        Ans.Clear();
        for( int i = 1; i <= 200; ++i ) Ans.A[ i ][ i ] = 0;
        for( int i = 1; i <= T; ++i ) {
            Basic.A[ I1[ i ] ][ I2[ i ] ] = min( Basic.A[ I1[ i ] ][ I2[ i ] ], Length[ i ] );
            Basic.A[ I2[ i ] ][ I1[ i ] ] = min( Basic.A[ I2[ i ] ][ I1[ i ] ], Length[ i ] );
        }
        return;
    }
    
    int main() {
        scanf( "%lld%lld%lld%lld", &N, &T, &S, &E );
        for( LL i = 1; i <= T; ++i )
            scanf( "%lld%lld%lld", &Length[ i ], &I1[ i ], &I2[ i ] );
        myHash::Hash();
        Init();
        for( ; N; N >>= 1, Basic = Basic * Basic ) 
            if( N & 1 ) Ans = Basic * Ans;
        printf( "%lld
    ", Ans.A[ myHash::Reflection[ S ] ][ myHash::Reflection[ E ] ] );
        return 0;
    }
    
  • 相关阅读:
    SQL语句熟悉
    CSS3 attribute
    轮播器
    PHP 邮箱操作的Action
    Hole puncher Show Picture
    力扣算法——133.CloneGraph【M】
    力扣算法——134GasStation【M】
    力扣算法——135Candy【H】
    力扣算法——136SingleNumber【E】
    力扣算法——137SingleNumberII【M】
  • 原文地址:https://www.cnblogs.com/chy-2003/p/9777861.html
Copyright © 2011-2022 走看看