题面
题解
一眼(0/1)分数规划
二分答案(mid),我们要(sumlimits_i a^{'}_i - midsumlimits_i b_i^{'})最大
那么我们将(a_{i,j}-mid imes b_{i,j})作为((i,j))的边权
跑一遍二分图最大权匹配即可。
代码
// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<cctype>
#include<cmath>
#include<algorithm>
#include<queue>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define clear(x, y) memset(x, y, sizeof(x))
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int N(110), maxn(5e5 + 10);
const double eps(1e-8);
struct edge { int next, to, cap; double dis; } e[maxn];
int head[maxn], e_num = -1, S, T, a[N][N], b[N][N];
int pre[maxn], pre_e[maxn], vis[maxn], n;
double dis[maxn], cost;
inline void add_edge(int from, int to, int cap, double dis)
{
e[++e_num] = (edge) {head[from], to, cap, dis}; head[from] = e_num;
e[++e_num] = (edge) {head[to], from, 0, -dis}; head[to] = e_num;
}
std::queue<int> q;
void MinCostMaxFlow()
{
cost = 0;
while(1)
{
std::fill(dis + S, dis + T + 1, -1e20); clear(vis, 0);
vis[S] = 1, dis[S] = 0, q.push(S);
while(!q.empty())
{
int x = q.front(); q.pop();
for(RG int i = head[x]; ~i; i = e[i].next)
{
int to = e[i].to; double ds = e[i].dis + dis[x];
if(e[i].cap > 0 && dis[to] < ds)
{
dis[to] = ds, pre[to] = x, pre_e[to] = i;
if(!vis[to]) vis[to] = 1, q.push(to);
}
}
vis[x] = 0;
}
if(dis[T] == -1e20) return;
int cap = 1e9;
for(RG int i = T; i ^ S; i = pre[i])
cap = std::min(cap, e[pre_e[i]].cap);
cost += 1. * cap * dis[T];
for(RG int i = T; i ^ S; i = pre[i])
e[pre_e[i]].cap -= cap, e[pre_e[i] ^ 1].cap += cap;
}
}
bool check(double mid)
{
e_num = -1, S = 1, T = (n << 1) + 2;
for(RG int i = S; i <= T; i++) head[i] = -1;
for(RG int i = 1; i <= n; i++) add_edge(S, i + 1, 1, 0);
for(RG int i = n + 2; i < T; i++) add_edge(i, T, 1, 0);
for(RG int i = 1; i <= n; i++) for(RG int j = 1; j <= n; j++)
add_edge(i + 1, j + n + 1, 1, 1. * a[i][j] - 1. * b[i][j] * mid);
MinCostMaxFlow(); return fabs(cost) <= eps || cost > eps;
}
int main()
{
n = read();
for(RG int i = 1; i <= n; i++)
for(RG int j = 1; j <= n; j++)
a[i][j] = read();
for(RG int i = 1; i <= n; i++)
for(RG int j = 1; j <= n; j++)
b[i][j] = read();
double l = -1e7, r = 1e7;
while(fabs(r - l) > eps)
{
double mid = (l + r) / 2;
if(check(mid)) l = mid;
else r = mid;
}
printf("%.6lf
", r);
return 0;
}