zoukankan      html  css  js  c++  java
  • 【HNOI2013】游走

    题面

    题解

    图上的期望大部分是(dp),无向图的期望大部分是高斯消元

    (f[i])表示走到点(i)的期望,(d[i])表示(i)的度,(to(i))表示(i)能到达的点集

    所以(f[i] = sumlimits_{x in to(i)} f[x] / d[x])

    然后每个点能够列出这样的方程,直接高斯消元就可以了

    代码

    #include<bits/stdc++.h>
    #define RG register
    #define clear(x, y) memset(x, y, sizeof(x));
    using namespace std;
    
    inline int read()
    {
    	int data = 0, w = 1;
    	char ch = getchar();
    	while(ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
    	if(ch == '-') w = -1, ch = getchar();
    	while(ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
    	return data*w;
    }
    
    const int maxn(510), maxm(250100);
    struct edge { int next, to; } e[maxm << 1];
    int head[maxn], e_num;
    inline void add_edge(int from, int to) { e[++e_num] = {head[from], to}; head[from] = e_num; }
    double a[maxn][maxn], ans[maxm], Ans, deg[maxn];
    int n, m, from[maxm], to[maxm];
    
    inline void Gauss()
    {
    	for(RG int i = 1, k = i; i <= n; i++, k = i)
    	{
    		for(RG int j = k + 1; j <= n; j++) if(fabs(a[k][i]) < fabs(a[j][i])) k = j;
    		swap(a[i], a[k]);
    		for(RG int j = i + 1; j <= n + 1; j++) a[i][j] /= a[i][i];
    		a[i][i] = 1.;
    		for(RG int j = 1; j <= n; j++)
    		{
    			if(i == j) continue;
    			for(RG int k = i + 1; k <= n + 1; k++) a[j][k] -= a[j][i] * a[i][k];
    			a[j][i] = 0.;
    		}
    	}
    }
    
    int main()
    {
    	n = read(); m = read();
    	for(RG int i = 1; i <= m; i++)
    	{
    		from[i] = read(); to[i] = read();
    		add_edge(from[i], to[i]); deg[from[i]] += 1.;
    		add_edge(to[i], from[i]); deg[to[i]] += 1.;
    	}
    	for(RG int i = 1; i < n; i++)
    	{
    		for(RG int j = head[i]; j; j = e[j].next) if(e[j].to != n) a[i][e[j].to] += -1. / deg[e[j].to];
    		a[i][i] = 1;
    	}
    	a[n][n] = 1;
    	a[1][n + 1] = 1; Gauss();
    	for(RG int i = 1; i <= m; i++)
    		ans[i] = ((from[i] == n) ? 0 : a[from[i]][n + 1] / deg[from[i]]) + ((to[i] == n) ? 0 : a[to[i]][n + 1] / deg[to[i]]);
    	sort(ans + 1, ans + m + 1);
    	for(RG int i = 1; i <= m; i++) Ans += (m - i + 1) * ans[i];
    	printf("%.3lf
    ", Ans);
    	return 0;
    }
    
  • 相关阅读:
    ORACLE 日期格式
    Oracle 12c release 2的安装
    InstantClient+PLSQL安装配置教程
    POSTMAN打印日志与json文件传参
    POSTMAN Request的几个要素
    Python+selenium处理滚动条
    Keys 类键盘操作的常用方法
    ActionChains类鼠标操作的常用方法
    Python+webdriver 文件上传自动化
    【SDOI2011】染色
  • 原文地址:https://www.cnblogs.com/cj-xxz/p/10396422.html
Copyright © 2011-2022 走看看