zoukankan      html  css  js  c++  java
  • POJ3252

    现在开始刷数学相关的题目,这道题是真的难!

    首先对于一个初中都没上完的蒟蒻(没错就是我),很多组合公式都是不可食用的

    而且我的组合数的意义也比较混乱,像我都是用C(m,n)表示n个数里面选m个数的

    其次什么鬼的组合数C[i][j]递推公式我都不知道(我只知道C(m,n)=n!/m!/(n-m)!)

    好了但这些都不是借口,我们开始看这道题

    题意:找出在l~r这个区间中的RN(Round Number)个数,所谓RN就是一个十进制数转换为二进制后0的个数>=1的个数的数

    首先对于这种区间的问题我们都可以用类前缀和的思想去解决

    例如我们令f[x]表示0~x这个范围中RN的个数,则可以得到:

    ans=f[r]-f[l-1]
    

    然后问题就转化为求f[x]的值

    我们对于每一个x,先把它转化为二进制数,得到它的位数cnt

    然后我们发现所有位数比cnt小的数都比x小,于是我们统计位数为2~cnt-1(因为1位的数中没有RN,题目明确了0不算)的RN个数

    首先对于当前的长度len,我们知道第1位肯定是为1的,因此我们只要求剩下的len-1位0的个数>=1的个数的方案总数

    这里的推导需要一定的数学基础,我还是有一点模糊的,大家可以看这篇blog的证明推导过程

    然后找一下和x相同长度的但比它小的RN个数

    首先第一位为1,然后对于后面每一位为1的情况,都可以把1改成0然后统计后面0的填法(最少填0个,最多全填满)

    最后还要看一下这个数本身是不是RN,然后就解决了这个问题、

    组合数递推公式

    C[j][i]=C[j][i-1]+C[j-1][i-1];
    

    CODE

    #include<cstdio>
    using namespace std;
    typedef long long LL;
    const int N=32;
    int bit[N+5],l,r,cnt;
    LL C[N+5][N+5];
    inline void init(void)
    {
    	C[0][0]=C[0][1]=C[1][1]=1;
    	for (register int i=2;i<=N;++i)
    	{
    		C[0][i]=1; 
    		for (register int j=1;j<i;++j)
    		C[j][i]=C[j][i-1]+C[j-1][i-1];
    		C[i][i]=1;
    	}
    }
    inline int calc(int x)
    {
    	if (x<=1) return 0;
    	register int i,j; LL ans=0; cnt=0;
    	while (x)
    	{
    		bit[++cnt]=x&1;
    		x>>=1;
    	}
    	for (i=cnt-1;i>=1;--i)
    	if (i&1) ans+=((1<<i-1)-C[i-1>>1][i-1])>>1; else ans+=(1<<i-1)>>1;
    	int num0=0,num1=1;
    	for (i=cnt-1;i>=1;--i)
    	if (bit[i]) 
    	{
    		for (j=i;j>=1&&j+num0>=i-j+num1;--j)
    		ans+=C[j-1][i-1]; ++num1;
    	} else ++num0;
    	return num0>=num1?ans+1:ans;
    }
    int main()
    {
    	init();
    	while (scanf("%d%d",&l,&r)!=EOF)
    	printf("%d
    ",calc(r)-calc(l-1));
    	return 0;
    }
    
  • 相关阅读:
    github中,一些涉及到用户配置的文件怎么处理(比如数据库用户名/密码)?
    XMLHttpRequest cannot load file浏览器无法异步加载本地file文件
    HTML小技巧
    HTML实体符号代码速查表
    宽度不固定,水平居中
    CSS实现背景透明,文字不透明
    window.inner 兼容IE8
    div横排放置对齐问题;block,inline,inline-block区别
    IE兼容CSS3圆角border-radius的方法(同时兼容box-shadow,text-shadow)
    js 值和引用
  • 原文地址:https://www.cnblogs.com/cjjsb/p/9050590.html
Copyright © 2011-2022 走看看