zoukankan      html  css  js  c++  java
  • Deep Q-Network 学习笔记(四)—— 改进②:double dqn

    这篇没搞懂。。。这里只对实现做记录。

    修改的地方也只是在上一篇的基础上,在“记忆回放”函数里,计算 target Q 时取值做下调整即可。

        def experience_replay(self):
            """
            记忆回放。
            :return:
            """
            # 检查是否替换 target_net 参数
            if self.learn_step_counter % self.network.replace_target_stepper == 0:
                self.network.replace_target_params()
    
            # 随机选择一小批记忆样本。
            batch = self.BATCH if self.memory_counter > self.BATCH else self.memory_counter
            minibatch = random.sample(self.replay_memory_store, batch)
    
            batch_state = None
            batch_action = None
            batch_reward = None
            batch_next_state = None
            batch_done = None
    
            for index in range(len(minibatch)):
                if batch_state is None:
                    batch_state = minibatch[index][0]
                elif batch_state is not None:
                    batch_state = np.vstack((batch_state, minibatch[index][0]))
    
                if batch_action is None:
                    batch_action = minibatch[index][1]
                elif batch_action is not None:
                    batch_action = np.vstack((batch_action, minibatch[index][1]))
    
                if batch_reward is None:
                    batch_reward = minibatch[index][2]
                elif batch_reward is not None:
                    batch_reward = np.vstack((batch_reward, minibatch[index][2]))
    
                if batch_next_state is None:
                    batch_next_state = minibatch[index][3]
                elif batch_next_state is not None:
                    batch_next_state = np.vstack((batch_next_state, minibatch[index][3]))
    
                if batch_done is None:
                    batch_done = minibatch[index][4]
                elif batch_done is not None:
                    batch_done = np.vstack((batch_done, minibatch[index][4]))
    
            q_next = self.network.get_next_q(batch_next_state)
            q_eval4next = self.network.get_q(batch_next_state)
    
            # q_eval 得出的最高奖励动作。
            max_act4next = np.argmax(q_eval4next, axis=1)
    
            q_target = []
            for i in range(len(minibatch)):
                # Double DQN 选择 q_next 依据 q_eval 选出的动作。
                selected_q_next = q_next[i, max_act4next]
                max_q = selected_q_next[0]
    
                # 当前即时得分。
                current_reward = batch_reward[i][0]
    
                # # 游戏是否结束。
                # current_done = batch_done[i][0]
    
                # 更新 Q 值。
                q_value = current_reward + self.gamma * max_q
    
                # 当得分小于 -1 时,表示走了不可走的位置。
                if current_reward <= -1:
                    q_target.append(current_reward)
                else:
                    q_target.append(q_value)
    
            self.network.train(batch_state, q_target, batch_action)
    
            self.learn_step_counter += 1

    完整代码

    神经网络部分:

    import tensorflow as tf
    import numpy as np
    
    
    class DeepQNetwork:
        # q_eval 网络状态输入参数。
        q_eval_input = None
    
        # q_eval 网络动作输入参数。
        q_action_input = None
    
        # q_eval 网络中 q_target 的输入参数。
        q_eval_target = None
    
        # q_eval 网络输出结果。
        q_eval_output = None
    
        # q_eval 网络输出的结果中的最优得分。
        q_predict = None
    
        # q_eval 网络输出的结果中当前选择的动作得分。
        reward_action = None
    
        # q_eval 网络损失函数。
        loss = None
    
        # q_eval 网络训练。
        train_op = None
    
        # q_target 网络状态输入参数。
        q_target_input = None
    
        # q_target 网络输出结果。
        q_target_output = None
    
        # 更换 target_net 的步数。
        replace_target_stepper = 0
    
        def __init__(self, input_num, output_num, learning_rate=0.001, replace_target_stepper=300, session=None):
            self.learning_rate = learning_rate
            self.INPUT_NUM = input_num
            self.OUTPUT_NUM = output_num
            self.replace_target_stepper = replace_target_stepper
    
            self.create()
    
            if session is None:
                self.session = tf.InteractiveSession()
                self.session.run(tf.initialize_all_variables())
    
        def create(self):
            neuro_layer_1 = 3
            w_init = tf.random_normal_initializer(0, 0.3)
            b_init = tf.constant_initializer(0.1)
    
            # -------------- 创建 eval 神经网络, 及时提升参数 -------------- #
            self.q_eval_input = tf.placeholder(shape=[None, self.INPUT_NUM], dtype=tf.float32, name="q_eval_input")
            self.q_action_input = tf.placeholder(shape=[None, self.OUTPUT_NUM], dtype=tf.float32)
            self.q_eval_target = tf.placeholder(shape=[None], dtype=tf.float32, name="q_target")
    
            with tf.variable_scope("eval_net"):
                q_name = ['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES]
    
                with tf.variable_scope('l1'):
                    w1 = tf.get_variable('w1', [self.INPUT_NUM, neuro_layer_1], initializer=w_init, collections=q_name)
                    b1 = tf.get_variable('b1', [1, neuro_layer_1], initializer=b_init, collections=q_name)
                    l1 = tf.nn.relu(tf.matmul(self.q_eval_input, w1) + b1)
    
                with tf.variable_scope('l2'):
                    w2 = tf.get_variable('w2', [neuro_layer_1, self.OUTPUT_NUM], initializer=w_init, collections=q_name)
                    b2 = tf.get_variable('b2', [1, self.OUTPUT_NUM], initializer=b_init, collections=q_name)
                    self.q_eval_output = tf.matmul(l1, w2) + b2
                    self.q_predict = tf.argmax(self.q_eval_output, 1)
    
            with tf.variable_scope('loss'):
                # 取出当前动作的得分。
                self.reward_action = tf.reduce_sum(tf.multiply(self.q_eval_output, self.q_action_input),
                                                   reduction_indices=1)
                self.loss = tf.reduce_mean(tf.square((self.q_eval_target - self.reward_action)))
    
            with tf.variable_scope('train'):
                self.train_op = tf.train.GradientDescentOptimizer(self.learning_rate).minimize(self.loss)
    
            # -------------- 创建 target 神经网络, 及时提升参数 -------------- #
            self.q_target_input = tf.placeholder(shape=[None, self.INPUT_NUM], dtype=tf.float32, name="q_target_input")
    
            with tf.variable_scope("target_net"):
                t_name = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES]
    
                with tf.variable_scope('l1'):
                    w1 = tf.get_variable('w1', [self.INPUT_NUM, neuro_layer_1], initializer=w_init, collections=t_name)
                    b1 = tf.get_variable('b1', [1, neuro_layer_1], initializer=b_init, collections=t_name)
                    l1 = tf.nn.relu(tf.matmul(self.q_target_input, w1) + b1)
    
                with tf.variable_scope('l2'):
                    w2 = tf.get_variable('w2', [neuro_layer_1, self.OUTPUT_NUM], initializer=w_init, collections=t_name)
                    b2 = tf.get_variable('b2', [1, self.OUTPUT_NUM], initializer=b_init, collections=t_name)
                    self.q_target_output = tf.matmul(l1, w2) + b2
    
        def replace_target_params(self):
            """
            使用 Tensorflow 中的 assign 功能替换 target_net 所有参数。
            :return:
            """
            # 提取 target_net 的参数。
            t_params = tf.get_collection('target_net_params')
            # 提取 eval_net 的参数。
            e_params = tf.get_collection('eval_net_params')
            # 更新 target_net 参数。
            self.session.run([tf.assign(t, e) for t, e in zip(t_params, e_params)])
    
        def get_q(self, input_data):
            return self.session.run(self.q_eval_output, {self.q_eval_input: input_data})
    
        def get_next_q(self, input_data):
            return self.session.run(self.q_target_output, {self.q_target_input: input_data})
    
        def get_predict(self, input_data):
            return np.max(self.get_q(input_data))
    
        def get_action(self, input_data):
            return np.argmax(self.get_q(input_data))
    
        def train(self, input_data, y_, action_input):
            _, cost = self.session.run([self.train_op, self.loss],
                                       feed_dict={self.q_eval_input: input_data,
                                                  self.q_action_input: action_input,
                                                  self.q_eval_target: y_})
            return cost

    主逻辑实现:

    import numpy as np
    from collections import deque
    import random
    from q_network import DeepQNetwork
    
    
    class Agent:
    
        r = np.array([[-1, -1, -1, -1, 0, -1],
                      [-1, -1, -1, 0, -1, 100.0],
                      [-1, -1, -1, 0, -1, -1],
                      [-1, 0, 0, -1, 0, -1],
                      [0, -1, -1, 1, -1, 100],
                      [-1, 0, -1, -1, 0, 100],
                      ])
    
        # 神经网络。
        network = None
    
        def __init__(self):
            # 执行步数。
            self.step_index = 0
    
            # 状态数。
            self.STATE_NUM = 6
    
            # 动作数。
            self.ACTION_NUM = 6
    
            # 记忆上限。
            self.memory_size = 5000
    
            # 当前记忆数。
            self.memory_counter = 0
    
            # 保存观察到的执行过的行动的存储器,即:曾经经历过的记忆。
            self.replay_memory_store = deque()
    
            # 训练之前观察多少步。
            self.OBSERVE = 5000
    
            # 训练步数统计。
            self.learn_step_counter = 0
    
            # 选取的小批量训练样本数。
            self.BATCH = 20
    
            # γ经验折损率。
            self.gamma = 0.9
    
            # -------------------- 探索策略 -------------------- #
            # epsilon 的最小值,当 epsilon 小于该值时,将不在随机选择行为。
            self.FINAL_EPSILON = 0.0001
    
            # epsilon 的初始值,epsilon 逐渐减小。
            self.INITIAL_EPSILON = 0.1
    
            # epsilon 衰减的总步数。
            self.EXPLORE = 3000000.
    
            # 探索模式计数。
            self.epsilon = 0
            # -------------------- 探索策略 -------------------- #
    
            # 生成神经网络。
            self.network = DeepQNetwork(input_num=self.STATE_NUM,
                                        output_num=self.ACTION_NUM,
                                        learning_rate=0.001,
                                        replace_target_stepper=300,
                                        session=None)
    
            # 生成一个状态矩阵(6 X 6),每一行代表一个状态。
            self.state_list = np.identity(self.STATE_NUM)
    
            # 生成一个动作矩阵。
            self.action_list = np.identity(self.ACTION_NUM)
    
        def select_action(self, current_state_index):
            """
            根据策略选择动作。
            :param current_state_index:
            :return:
            """
            # 获得当前状态。
            current_state = self.state_list[current_state_index:current_state_index + 1]
    
            # 根据当前状态获得在 Q 网络中最有价值的动作,并返回动作序号。
            current_action_index = self.network.get_action(current_state)
    
            if np.random.uniform() < self.epsilon:
                current_action_index = np.random.randint(0, self.ACTION_NUM)
    
            # 开始训练后,在 epsilon 小于一定的值之前,将逐步减小 epsilon。
            if self.step_index > self.OBSERVE and self.epsilon > self.FINAL_EPSILON:
                self.epsilon -= (self.INITIAL_EPSILON - self.FINAL_EPSILON) / self.EXPLORE
    
            return current_action_index
    
        def save_store(self, current_state_index, current_action_index, current_reward, next_state_index, done):
                """
                保存记忆。
                :param current_state_index: 当前状态 index。
                :param current_action_index: 动作 index。
                :param current_reward: 奖励。
                :param next_state_index: 下一个状态 index。
                :param done: 是否结束。
                :return:
                """
                current_state = self.state_list[current_state_index:current_state_index + 1]
                current_action = self.action_list[current_action_index:current_action_index + 1]
                next_state = self.state_list[next_state_index:next_state_index + 1]
                # 记忆动作(当前状态, 当前执行的动作, 当前动作的得分,下一个状态)。
                self.replay_memory_store.append((
                    current_state,
                    current_action,
                    current_reward,
                    next_state,
                    done))
    
                # 如果超过记忆的容量,则将最久远的记忆移除。
                if len(self.replay_memory_store) > self.memory_size:
                    self.replay_memory_store.popleft()
    
                self.memory_counter += 1
    
        def run_game(self, state_index, action_index):
            """
            执行动作。
            :param state_index: 当前状态。
            :param action_index: 执行的动作。
            :return:
            """
            reward = self.r[state_index][action_index]
    
            next_state = action_index
    
            done = False
    
            if action_index == 5:
                done = True
    
            return next_state, reward, done
    
        def experience_replay(self):
            """
            记忆回放。
            :return:
            """
            # 检查是否替换 target_net 参数
            if self.learn_step_counter % self.network.replace_target_stepper == 0:
                self.network.replace_target_params()
    
            # 随机选择一小批记忆样本。
            batch = self.BATCH if self.memory_counter > self.BATCH else self.memory_counter
            minibatch = random.sample(self.replay_memory_store, batch)
    
            batch_state = None
            batch_action = None
            batch_reward = None
            batch_next_state = None
            batch_done = None
    
            for index in range(len(minibatch)):
                if batch_state is None:
                    batch_state = minibatch[index][0]
                elif batch_state is not None:
                    batch_state = np.vstack((batch_state, minibatch[index][0]))
    
                if batch_action is None:
                    batch_action = minibatch[index][1]
                elif batch_action is not None:
                    batch_action = np.vstack((batch_action, minibatch[index][1]))
    
                if batch_reward is None:
                    batch_reward = minibatch[index][2]
                elif batch_reward is not None:
                    batch_reward = np.vstack((batch_reward, minibatch[index][2]))
    
                if batch_next_state is None:
                    batch_next_state = minibatch[index][3]
                elif batch_next_state is not None:
                    batch_next_state = np.vstack((batch_next_state, minibatch[index][3]))
    
                if batch_done is None:
                    batch_done = minibatch[index][4]
                elif batch_done is not None:
                    batch_done = np.vstack((batch_done, minibatch[index][4]))
    
         q_next
    = self.network.get_next_q(batch_next_state) q_eval4next = self.network.get_q(batch_next_state) # q_eval 得出的最高奖励动作。 max_act4next = np.argmax(q_eval4next, axis=1) q_target = [] for i in range(len(minibatch)): # Double DQN 选择 q_next 依据 q_eval 选出的动作。 selected_q_next = q_next[i, max_act4next] max_q = selected_q_next[0] # 当前即时得分。 current_reward = batch_reward[i][0] # # 游戏是否结束。 # current_done = batch_done[i][0] # 更新 Q 值。 q_value = current_reward + self.gamma * max_q # 当得分小于 -1 时,表示走了不可走的位置。 if current_reward <= -1: q_target.append(current_reward) else: q_target.append(q_value) self.network.train(batch_state, q_target, batch_action) self.learn_step_counter += 1 def train(self): """ 训练。 :return: """ # 初始化当前状态。 current_state = np.random.randint(0, self.ACTION_NUM - 1) self.epsilon = self.INITIAL_EPSILON while True: # 选择动作。 action = self.select_action(current_state) # 执行动作,得到:下一个状态,执行动作的得分,是否结束。 next_state, reward, done = self.run_game(current_state, action) # 保存记忆。 self.save_store(current_state, action, reward, next_state, done) # 先观察一段时间累积足够的记忆在进行训练。 if self.step_index > self.OBSERVE: self.experience_replay() if self.step_index - self.OBSERVE > 15000: break if done: current_state = np.random.randint(0, self.ACTION_NUM - 1) else: current_state = next_state self.step_index += 1 def pay(self): """ 运行并测试。 :return: """ self.train() # 显示 R 矩阵。 print(self.r) for index in range(5): start_room = index print("#############################", "Agent 在", start_room, "开始行动", "#############################") current_state = start_room step = 0 target_state = 5 while current_state != target_state: next_state = self.network.get_action(self.state_list[current_state:current_state + 1]) print("Agent 由", current_state, "号房间移动到了", next_state, "号房间") current_state = next_state step += 1 print("Agent 在", start_room, "号房间开始移动了", step, "步到达了目标房间 5") print("#############################", "Agent 在", 5, "结束行动", "#############################") if __name__ == "__main__": agent = Agent() agent.pay()
  • 相关阅读:
    axios的使用/
    jQuery好玩的双向控制轮播
    vue的路由跳转方式/两种
    vfor的某些注意事项
    vue使用插件时不能撑满页面?
    swiper中的双向控制器不生效问题
    sass的安装及使用
    .net必懂题
    软件架构初读01
    EJB
  • 原文地址:https://www.cnblogs.com/cjnmy36723/p/7063136.html
Copyright © 2011-2022 走看看