zoukankan      html  css  js  c++  java
  • [HNOI2013]切糕

    最小割


    让相邻的最小割上的点层数差小于等于d,也就是大于d时S,T仍然能相通
    那么可以从下面d层向上面相邻的点连容量为INF的边
    表示相邻的最小割上的点层数差大于d时,还能走这条INF边回来,流其它的路到T,这样就强制要小于等于d了


    # include <bits/stdc++.h>
    # define IL inline
    # define RG register
    # define Fill(a, b) memset(a, b, sizeof(a))
    # define Copy(a, b) memcpy(a, b, sizeof(a))
    # define ID(a, b) n * (a - 1) + b
    using namespace std;
    typedef long long ll;
    const int _(2e5 + 10), __(2e6 + 10), INF(2147483647);
    
    IL ll Read(){
        RG char c = getchar(); RG ll x = 0, z = 1;
        for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
        return x * z;
    }
    
    int p, q, r, v[60][60][60], d, id[60][60][60], num;
    int w[__], fst[_], nxt[__], to[__], cnt, S, T, lev[_], cur[_], max_flow;
    queue <int> Q;
    
    IL void Add(RG int u, RG int v, RG int f){
        w[cnt] = f; to[cnt] = v; nxt[cnt] = fst[u]; fst[u] = cnt++;
        w[cnt] = 0; to[cnt] = u; nxt[cnt] = fst[v]; fst[v] = cnt++;
    }
    
    IL int Dfs(RG int u, RG int maxf){
        if(u == T) return maxf;
        RG int ret = 0;
        for(RG int &e = cur[u]; e != -1; e = nxt[e]){
            if(lev[to[e]] != lev[u] + 1 || !w[e]) continue;
            RG int f = Dfs(to[e], min(w[e], maxf - ret));
            ret += f; w[e ^ 1] += f; w[e] -= f;
            if(ret == maxf) break;
        }
        if(!ret) lev[u] = 0;
        return ret;
    }
    
    IL bool Bfs(){
        Fill(lev, 0); lev[S] = 1; Q.push(S);
        while(!Q.empty()){
            RG int u = Q.front(); Q.pop();
            for(RG int e = fst[u]; e != -1; e = nxt[e]){
                if(lev[to[e]] || !w[e]) continue;
                lev[to[e]] = lev[u] + 1;
                Q.push(to[e]);
            }
        }
        return lev[T];
    }
    
    int main(RG int argc, RG char* argv[]){
        Fill(fst, -1); p = Read(); q = Read(); r = Read(); d = Read();
        for(RG int i = 1; i <= r; ++i)
            for(RG int j = 1; j <= p; ++j)
                for(RG int k = 1; k <= q; ++k)
                    id[i][j][k] = ++num, v[i][j][k] = Read();
        for(RG int j = 1; j <= p; ++j)
            for(RG int k = 1; k <= q; ++k)
                id[r + 1][j][k] = ++num;
        T = num + 1;
        for(RG int j = 1; j <= p; ++j)
            for(RG int k = 1; k <= q; ++k)
                Add(S, id[1][j][k], INF), Add(id[r + 1][j][k], T, INF);
        for(RG int i = 1; i <= r; ++i)
            for(RG int j = 1; j <= p; ++j)
                for(RG int k = 1; k <= q; ++k){
                    Add(id[i][j][k], id[i + 1][j][k], v[i][j][k]);
                    if(i - d){
                        if(j) Add(id[i][j][k], id[i - d][j - 1][k], INF);
                        if(k) Add(id[i][j][k], id[i - d][j][k - 1], INF);
                        if(j < p) Add(id[i][j][k], id[i - d][j + 1][k], INF);
                        if(k < q) Add(id[i][j][k], id[i - d][j][k + 1], INF);
                    }
                }
        while(Bfs()) Copy(cur, fst), max_flow += Dfs(S, INF);
        printf("%d
    ", max_flow);
        return 0;
    }
    
  • 相关阅读:
    DOS命令
    利用cmd合并文件
    Word文档编辑
    初识Java
    变量、数据类型、运算符-2
    设计模式之策略模式
    设计模式之装饰者模式
    第18章 java I/O系统(3)
    第18章 java I/O系统(2)
    第四章 栈与队列3 (堆栈的应用)
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8206348.html
Copyright © 2011-2022 走看看