zoukankan      html  css  js  c++  java
  • Bzoj2154: Crash的数字表格

    题意

    (求ans=sum_{i=1}^{n}sum_{j=1}^{n}lcm(i, j))
    n,m<=10^7

    Sol

    (原式=sum_{i=1}^{n}sum_{j=1}^{m}frac{i*j}{gcd(i, j)})
    假设n < m,
    (则ans=sum_{d=1}^{n}sum_{i=1}^{lfloorfrac{n}{d} floor}sum_{j=1}^{lfloorfrac{m}{d} floor} d*i*j*[gcd(i,j)==1])
    枚举d,看里面的
    (令x=lfloorfrac{n}{d} floor, y=lfloorfrac{m}{d} floor)
    (设f(k)=sum_{i=1}^{x}sum_{i=1}^{y}i*j*[gcd(i, j)==1])
    (设g(i)=sum_{i|d} f(d))即表示gcd是i及i的倍数的数对的乘积和
    (就是i^2*frac{(lfloorfrac{x}{i} floor + 1)*lfloorfrac{x}{i} floor}{2}*frac{(lfloorfrac{y}{i} floor + 1)*lfloorfrac{y}{i} floor}{2})
    然后就可以莫比乌斯反演求出f数组,从而得到答案
    但是暴力求显然跑不过10^7的点
    所以可以用两个数论分块+前缀和优化,记得取模,会爆

    代码

    不用数论分块,暴力

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    const int _(1e7), MOD(20101009);
     
    IL ll Read(){
        char c = '%'; ll x = 0, z = 1;
        for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
        return x * z;
    }
     
    int prime[_], num, mu[_];
    bool isprime[_];
     
    IL void Prepare(){
    	mu[1] = 1;
    	for(RG int i = 2; i <= _; ++i){
    		if(!isprime[i]){  prime[++num] = i; mu[i] = -1;  }
    		for(RG int j = 1; j <= num && i * prime[j] <= _; ++j){
    			isprime[i * prime[j]] = 1;
    			if(i % prime[j]) mu[i * prime[j]] = -mu[i];
    			else{  mu[i * prime[j]] = 0; break;  }
    		}
    	}
    }
     
    IL ll Calc(RG ll n, RG ll m){
    	RG ll f = 0, g;
    	for(RG ll i = 1; i <= n; ++i){
    		RG ll x = n / i, y = m / i;
    		g = i * i % MOD * (x * (x + 1) >> 1) % MOD * (y * (y + 1) >> 1) % MOD;
    		(f += 1LL * mu[i] * g % MOD) %= MOD;
    	}
    	return (f + MOD) % MOD;
    }
     
    int main(RG int argc, RG char *argv[]){
    	Prepare();
    	RG ll n = Read(), m = Read(), ans = 0;
    	if(n > m) swap(n, m);
    	for(RG ll d = 1; d <= n; ++d) (ans += d * Calc(n / d, m / d) % MOD) %= MOD;
    	printf("%lld
    ", ans);
    	return 0;
    }
    

    用数论分块

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    const int _(1e7 + 10), MOD(20101009);
    
    IL ll Read(){
        char c = '%'; ll x = 0, z = 1;
        for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
        return x * z;
    }
    
    int prime[_], num, mu[_], squ[_], s[_];
    bool isprime[_];
    
    IL void Prepare(){
    	mu[1] = 1; RG int maxn = 1e7;
    	for(RG int i = 2; i <= 1e7; ++i){
    		if(!isprime[i]){  prime[++num] = i; mu[i] = -1;  }
    		for(RG int j = 1; j <= num && i * prime[j] <= maxn; ++j){
    			isprime[i * prime[j]] = 1;
    			if(i % prime[j]) mu[i * prime[j]] = -mu[i];
    			else{  mu[i * prime[j]] = 0; break;  }
    		}
    	}
    }
    
    IL ll Calc(RG ll n, RG ll m){
    	RG ll f = 0, g, j;
    	for(RG ll i = 1; i <= n; i = j + 1){
    		RG ll x = n / i, y = m / i; j = min(n / (n / i), m / (m / i));
    		g = (x * (x + 1) >> 1) % MOD * ((y * (y + 1) >> 1) % MOD) % MOD;
    		(f += 1LL * (squ[j] - squ[i - 1]) % MOD * g % MOD) %= MOD;
    	}
    	return (f + MOD) % MOD;
    }
    
    int main(RG int argc, RG char *argv[]){
    	Prepare();
    	RG ll n = Read(), m = Read(), ans = 0, j;
    	if(n > m) swap(n, m);
    	for(RG int i = 1; i <= n; ++i)
    		squ[i] = ((squ[i - 1] + 1LL * mu[i] * i * i % MOD) % MOD + MOD) % MOD, s[i] = (s[i - 1] + i) % MOD;
    	for(RG ll d = 1; d <= n; d = j + 1){
    		j = min(n / (n / d), m / (m / d));
    		(ans += 1LL * ((s[j] - s[d - 1]) % MOD + MOD) % MOD * Calc(n / d, m / d) % MOD) %= MOD;
    	}
    	printf("%lld
    ", ans);
    	return 0;
    }
    
    
  • 相关阅读:
    How many things do you really about .net framwork?
    Things that will impact concurrency & capacity behavior of WCF service (with simoultaneous client requests/connections)
    3 ways to do WCF Message Exchange Model
    3 ways to create WCF Client(ChannelFactory)
    Do not apply "using" for the clientWCF Client
    Understanding WCF Session
    Using FaultContract
    3 ways to do WCF Concurrency Management(Single, Multiple, and Reentrant and How to do with Throttling)
    webview使用技巧汇总
    反序列化网易miniblog json格式数据 原创 create by lee
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8252744.html
Copyright © 2011-2022 走看看