题面
Sol
首先从大向小,能关就关显然是最优
然后
设(f[i])表示剩下最优要按i个开关的期望步数,倒推过来就是
[f[i]=f[i-1]*i*inv[n]+f[i+1]*(n-i)*inv[n]+1
]
(inv)表示逆元
设(g[i]=f[i]-f[i-1])
那么上式变为
[sum_{j=1}^{i}g[i]=sum_{j=1}^{i-1}g[i] *i*inv[n]+sum_{j=1}^{i+1}g[i]*(n-i)*inv[n]+1
]
化简
[g[i]=(g[i]+g[i+1])*(n-i)*inv[n]+1\
g[i]=((n-i)*g[i+1]+n)*inv[i]\
]
边界(g[n+1]=0)
最后就记个前缀和就好了
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e5 + 5);
const int Zsy(100003);
IL ll Input(){
RG ll x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, k, step, facn = 1, inv[_], f[_], ans;
bool sta[_], nxt[_];
IL void Up(RG int &x, RG int y){
x += y;
if(x >= Zsy) x -= Zsy;
}
int main(RG int argc, RG char* argv[]){
n = Input(); k = Input();
for(RG int i = 1; i <= n; ++i) facn = 1LL * facn * i % Zsy, sta[i] = Input();
for(RG int i = n; i; --i){
RG bool g = sta[i];
for(RG int j = i + i; j <= n; j += i) g ^= nxt[j];
if(g) nxt[i] = 1, ++step;
}
if(step <= k) return printf("%lld
", 1LL * facn * step % Zsy), 0;
inv[1] = 1;
for(RG int i = 2; i <= n; ++i) inv[i] = (-1LL * (Zsy / i) * inv[Zsy % i] % Zsy + Zsy) % Zsy;
for(RG int i = 1; i <= k; ++i) f[i] = 1;
for(RG int i = n; i > k; --i) f[i] = 1LL * inv[i] * (1LL * (n - i) * f[i + 1] % Zsy + n) % Zsy;
for(RG int i = 1; i <= step; ++i) Up(ans, f[i]);
printf("%lld
", 1LL * facn * ans % Zsy);
return 0;
}