zoukankan      html  css  js  c++  java
  • Bzoj4817:[SDOI2017]树点涂色

    题面

    Bzoj

    Sol

    做个转化
    最开始都是虚边
    操作(1)就是(LCT)里的(Access)操作
    求的就是路径上虚边的个数+1

    然后就好办了
    用树链剖分+线段树来维护每个点到根虚边的个数的最大值
    操作(1)(Access)时虚实边的转换,要把原来连的点的(Splay)的最左边的点在原树中的子树所有点+1,再把现在连的点做同样的操作-1
    操作(2):单点查询,记(deep[x])(x)到根的虚边个数,那么答案就是(deep[x]+deep[y]-2*deep[lca]+1)
    操作(3):子树最大值

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    const int _(2e5 + 5);
    
    IL ll Input(){
        RG ll x = 0, z = 1; RG char c = getchar();
        for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
        return x * z;
    }
    
    int size[_], Fa[_], deep[_], top[_], son[_], dfn[_], Index, ed[_], id[_];
    int fst[_], nxt[_], to[_], cnt, n, m;
    int ch[2][_], fa[_];
    int mx[_ << 2], tag[_ << 2];
    
    IL void Add(RG int u, RG int v){
        nxt[cnt] = fst[u]; to[cnt] = v; fst[u] = cnt++;
    }
    
    # define lson x << 1, l, mid
    # define rson x << 1 | 1, mid + 1, r
    
    IL void Build(RG int x, RG int l, RG int r){
    	if(l == r){
    		mx[x] = deep[id[l]];
    		return;
    	}
    	RG int mid = (l + r) >> 1;
    	Build(lson); Build(rson);
    	mx[x] = max(mx[x << 1], mx[x << 1 | 1]);
    }
    
    IL void Modify(RG int x, RG int l, RG int r, RG int L, RG int R, RG int v){
    	if(L <= l && R >= r){
    		tag[x] += v, mx[x] += v;
    		return;
    	}
    	RG int mid = (l + r) >> 1;
    	if(L <= mid) Modify(lson, L, R, v);
    	if(R > mid) Modify(rson, L, R, v);
    	mx[x] = max(mx[x << 1], mx[x << 1 | 1]) + tag[x];
    }
    
    IL int Query(RG int x, RG int l, RG int r, RG int L, RG int R){
    	if(L <= l && R >= r) return mx[x];
    	RG int mid = (l + r) >> 1, ans = 0;
    	if(L <= mid) ans = Query(lson, L, R);
    	if(R > mid) ans = max(ans, Query(rson, L, R));
    	return ans + tag[x];
    }
    
    # undef lson
    # undef rson
    
    IL void Dfs1(RG int u){
        size[u] = 1;
        for(RG int e = fst[u]; e != -1; e = nxt[e]){
            if(size[to[e]]) continue;
            fa[to[e]] = Fa[to[e]] = u, deep[to[e]] = deep[u] + 1;
            Dfs1(to[e]);
            size[u] += size[to[e]];
            if(size[to[e]] > size[son[u]]) son[u] = to[e];
        }
    }
    
    IL void Dfs2(RG int u, RG int Top){
        dfn[u] = ++Index, top[u] = Top, id[Index] = u;
        if(son[u]) Dfs2(son[u], Top);
        for(RG int e = fst[u]; e != -1; e = nxt[e])
            if(!dfn[to[e]]) Dfs2(to[e], to[e]);
    	ed[u] = Index;
    }
    
    IL int LCA(RG int u, RG int v){
        while(top[u] ^ top[v]){
            if(deep[top[u]] > deep[top[v]]) swap(u, v);
            v = Fa[top[v]];
        }
        return deep[u] > deep[v] ? v : u;
    }
    
    IL int Son(RG int x){  return ch[1][fa[x]] == x;  }
    
    IL int Isroot(RG int x){  return ch[0][fa[x]] != x && ch[1][fa[x]] != x;  }
    
    IL int Find(RG int x){  while(ch[0][x]) x = ch[0][x]; return x;  } 
    
    IL void Rotate(RG int x){
        RG int y = fa[x], z = fa[y], c = Son(x);
        if(!Isroot(y)) ch[Son(y)][z] = x; fa[x] = z;
        ch[c][y] = ch[!c][x]; fa[ch[c][y]] = y;
        ch[!c][x] = y; fa[y] = x;
    }
    
    IL void Splay(RG int x){
        for(RG int y = fa[x]; !Isroot(x); Rotate(x), y = fa[x])
            if(!Isroot(y)) Son(x) ^ Son(y) ? Rotate(x) : Rotate(y);
    }
    
    IL void Access(RG int x){
    	for(RG int y = 0, ff; x; y = x, x = fa[x]){
    		Splay(x);
    		if(ch[1][x]) ff = Find(ch[1][x]), Modify(1, 1, n, dfn[ff], ed[ff], 1);
    		if(y) ff = Find(y), Modify(1, 1, n, dfn[ff], ed[ff], -1);
    		ch[1][x] = y;
    	}
    }
    
    int main(RG int argc, RG char* argv[]){
        n = Input(); m = Input(); Fill(fst, -1);
        for(RG int i = 1, x, y; i < n; ++i)
            x = Input(), y = Input(), Add(x, y), Add(y, x);
        Dfs1(1), Dfs2(1, 1), Build(1, 1, n);
    	for(RG int i = 1; i <= m; ++i){
    		RG int opt = Input(), x = Input(), y, ans = 0, lca;
    		if(opt == 1) Access(x);
    		else if(opt == 2){
    			y = Input(), lca = LCA(x, y);
    			ans = Query(1, 1, n, dfn[x], dfn[x]) + Query(1, 1, n, dfn[y], dfn[y]);
    			ans -= 2 * Query(1, 1, n, dfn[lca], dfn[lca]);
    			printf("%d
    ", ans + 1);
    		}
    		else printf("%d
    ", Query(1, 1, n, dfn[x], ed[x]) + 1);
    	}
        return 0;
    }
    
    
  • 相关阅读:
    Excel的Range对象(C#)
    SQLServer中常用的一些操作表,字段和索引的SQL语句
    C#和Java初始化顺序
    Raid创建
    转WPF的Presenter(ContentPresenter)
    oracle 开机启动
    LVM介绍以及使用
    Web Service 返回参数
    ControlTemplate & DataTemplate
    设置SSH信任
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8438227.html
Copyright © 2011-2022 走看看