zoukankan      html  css  js  c++  java
  • SPOJ QTREE5

    题意

    一棵(n)个点的树,点从(1)(n)编号。每个点可能有两种颜色:黑或白。
    我们定义(dist(a,b))为点(a)至点(b)路径上的边个数。
    一开始所有的点都是黑色的。
    要求作以下操作:
    (0 i) 将点(i)的颜色反转(黑变白,白变黑)
    (1 v) 询问(dist(u,v))的最小值,(u)(v)可以相同,显然如果(v)是白点,查询得到的值一定是(0)
    特别地,如果作(1)操作时树上没有白点,输出(-1)

    Sol

    动态点分治+堆
    每次从这个点不断向上层重心更新,每个点用堆维护到它最近的白点
    查询,暴力向上跳重心,每次取出最近的点求(lca),取(dist)(min)
    好像比(QTREE4)简单

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    const int _(1e5 + 5);
    
    IL int Input(){
    	RG int x = 0, z = 1; RG char c = getchar();
    	for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
    	for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
    	return x * z;
    }
    
    int n, q, col[_], frt[_], first[_], cnt;
    int st[20][_ << 1], lg[_ << 1], deep[_], id[_], len;
    int size[_], mx[_], vis[_], rt, num, tot;
    struct Edge{
    	int to, next;
    } edge[_ << 1];
    struct Data{
    	int u, dis;
    
    	IL int operator <(RG Data B) const{
    		return dis > B.dis;
    	}
    };
    priority_queue <Data> Q[_];
    
    IL void Add(RG int u, RG int v){
    	edge[cnt] = (Edge){v, first[u]}, first[u] = cnt++;
    }
    
    IL void GetRoot(RG int u, RG int ff){
    	size[u] = 1, mx[u] = 0;
    	for(RG int e = first[u]; e != -1; e = edge[e].next){
    		RG int v = edge[e].to;
    		if(vis[v] || v == ff) continue;
    		GetRoot(v, u);
    		size[u] += size[v];
    		mx[u] = max(mx[u], size[v]);
    	}
    	mx[u] = max(mx[u], num - mx[u]);
    	if(mx[u] < mx[rt]) rt = u;
    }
    
    IL void Solve(RG int u){
    	vis[u] = 1;
    	for(RG int e = first[u]; e != -1; e = edge[e].next){
    		RG int v = edge[e].to;
    		if(vis[v]) continue;
    		num = size[v], rt = 0;
    		GetRoot(v, u);
    		frt[rt] = u, Solve(rt);
    	}
    }
    
    IL void Dfs(RG int u, RG int ff){
    	st[0][++len] = deep[u], id[u] = len;
    	for(RG int e = first[u]; e != -1; e = edge[e].next){
    		RG int v = edge[e].to;
    		if(v == ff) continue;
    		deep[v] = deep[u] + 1;
    		Dfs(v, u);
    		st[0][++len] = deep[u];
    	}
    }
    
    IL int Dis(RG int u, RG int v){
    	RG int dis = deep[u] + deep[v];
    	u = id[u], v = id[v];
    	if(u > v) swap(u, v);
    	RG int lgn = lg[v - u + 1];
    	return dis - 2 * min(st[lgn][u], st[lgn][v - (1 << lgn) + 1]);
    }
    
    IL int Query(RG int x){
    	RG int ans = 2e9;
    	for(RG int u = x; u; u = frt[u]){
    		while(!Q[u].empty() && !col[Q[u].top().u]) Q[u].pop();
    		if(!Q[u].empty()) ans = min(ans, Dis(x, Q[u].top().u));
    	}
    	return ans;
    }
    
    IL void Update(RG int x){
    	for(RG int u = x; u; u = frt[u]){
    		while(!Q[u].empty() && !col[Q[u].top().u]) Q[u].pop();
    		Q[u].push((Data){x, Dis(u, x)});
    	}
    }
    
    IL void Modify(RG int x){
    	if(col[x]) --tot, col[x] ^= 1;
    	else ++tot, col[x] ^= 1, Update(x);
    }
    
    int main(RG int argc, RG char *argv[]){
    	n = Input(), Fill(first, -1), mx[0] = n + 1;
    	for(RG int i = 1; i < n; ++i){
    		RG int u = Input(), v = Input();
    		Add(u, v), Add(v, u);
    	}
    	Dfs(1, 0);
    	for(RG int i = 2; i <= len; ++i) lg[i] = lg[i >> 1] + 1;
    	for(RG int j = 1; j <= lg[len]; ++j)
    		for(RG int i = 1; i + (1 << j) - 1 <= len; ++i)
    			st[j][i] = min(st[j - 1][i], st[j - 1][i + (1 << (j - 1))]);
    	num = n, GetRoot(1, 0), Solve(rt);
    	q = Input();
    	for(RG int i = 1, x; i <= q; ++i){
    		if(Input()) x = Input(), tot ? printf("%d
    ", Query(x)) : puts("-1");
    		else x = Input(), Modify(x);
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    泛型总结
    Java多线程(学习篇)
    Java线程:总结
    Java线程:线程交互
    Java线程:线程安全类和Callable与Future(有返回值的线程)
    Java线程:条件变量、原子量、线程池等
    Java线程:堵塞队列与堵塞栈
    Java线程:锁
    poj 1679 The Unique MST(唯一的最小生成树)
    poj 1659 Frogs' Neighborhood (DFS)
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8637957.html
Copyright © 2011-2022 走看看