zoukankan      html  css  js  c++  java
  • Bzoj1496: [NOI2006]千年虫

    题面

    传送门

    Sol

    左右可以分开搞
    然后就是要形成一个类似梳子的东西
    (f[0/1][i][j])
    (0)凹,(1)凸,(i)为行,可以滚一维,(j)为该行长度
    (f[0][i][j] = min(f[0][i - 1][j], f[1][i - 1][k]) + j - a[i]; k > j)
    (f[1][i][j] = min(f[1][i - 1][j], f[0][i - 1][k]) + j - a[i]; k < j)

    然后是(O(n^3))优化可以变成(O(n^2))
    可以有(50)

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    const int INF(1e9);
    const int _(1e6 + 5);
    typedef long long ll;
    
    IL int Input(){
        RG int x = 0, z = 1; RG char c = getchar();
        for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
        return x * z;
    }
    
    int n, l[_], r[_], ans, f[2][2][_], MX;
    
    IL int Solve(){
        Fill(f, 63);
        for(RG int i = r[1]; i <= MX; ++i) f[0][1][i] = i - r[1];
        for(RG int i = 2; i <= n; ++i){
            RG int p = i & 1, q = p ^ 1;
            for(RG int j = 0; j < r[i]; ++j) f[0][p][j] = f[1][p][j] = INF;
            for(RG int j = MX, mn = INF; j >= r[i]; --j){
                f[0][p][j] = min(f[0][q][j], mn) + j - r[i];
                mn = min(mn, f[1][q][j]);
            }
            RG int mn = INF;
            for(RG int j = 0; j < r[i]; ++j) mn = min(mn, f[0][q][j]);
            for(RG int j = r[i]; j <= MX; ++j){
                f[1][p][j] = min(f[1][q][j], mn) + j - r[i];
                mn = min(mn, f[0][q][j]);
            }
        }
        RG int ret = INF;
        for(RG int i = r[n]; i <= MX; ++i) ret = min(ret, f[0][n & 1][i]);
        return ret;
    }
    
    int main(RG int argc, RG char* argv[]){
        n = Input();
        for(RG int i = 1; i <= n; ++i)
            l[i] = Input(), r[i] = Input(), MX = max(MX, r[i] + 1);
        ans += Solve();
        for(RG int i = 1; i <= n; ++i) r[i] = MX - l[i];
        printf("%d
    ", ans + Solve());
        return 0;
    }
    

    正解有个结论,这一行的(dp)值只跟上下两行的长度有关
    并且只能为所有的([a[i], a[i]+2])的并
    然后不会证明
    看代码就会写了

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    const int INF(1e9);
    const int _(1e6 + 5);
    typedef long long ll;
    
    IL int Input(){
        RG int x = 0, z = 1; RG char c = getchar();
        for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
        return x * z;
    }
    
    int n, l[_], r[_], ans, f[2][2][_], MX, g[2][_], t[2];
    
    IL int Solve(){
    	Fill(f, 63), t[1] = 0; RG int rr = min(3, n);
    	for(RG int i = 1; i <= rr; ++i)
    		for(RG int j = r[i]; j <= r[i] + 2; ++j)
    			if(j >= r[1]) g[1][++t[1]] = j;
    	for(RG int i = 1; i <= t[1]; ++i) f[0][1][i] = g[1][i] - r[1];
    	for(RG int i = 2; i <= n; ++i){
    		RG int q = i & 1, p = q ^ 1; t[q] = 0;
    		RG int ll = max(1, i - 2), rr = min(i + 2, n);
    		for(RG int j = ll; j <= rr; ++j)
    			for(RG int k = r[j]; k <= r[j] + 2; ++k)
    				if(k >= r[i]) g[q][++t[q]] = k;
    		for(RG int j = 1; j <= t[q]; ++j){
    			f[0][q][j] = f[1][q][j] = INF;
    			for(RG int k = 1; k <= t[p]; ++k){
    				if(g[p][k] > g[q][j]) f[0][q][j] = min(f[0][q][j], f[1][p][k]);
    				else if(g[p][k] < g[q][j]) f[1][q][j] = min(f[1][q][j], f[0][p][k]);
    				else f[0][q][j] = min(f[0][q][j], f[0][p][k]), f[1][q][j] = min(f[1][q][j], f[1][p][k]);
    			}
    			f[0][q][j] += g[q][j] - r[i], f[1][q][j] += g[q][j] - r[i];
    		}
    	}
    	RG int ret = INF, q = n & 1;
    	for(RG int i = 1; i <= t[q]; ++i) ret = min(ret, f[0][q][i]);
    	return ret;
    }
    
    int main(RG int argc, RG char* argv[]){
    	freopen("worm.in", "r", stdin);
    	freopen("worm.out", "w", stdout);
    	n = Input();
    	for(RG int i = 1; i <= n; ++i)
    		l[i] = Input(), r[i] = Input(), MX = max(MX, r[i] + 1);
    	ans += Solve();
    	for(RG int i = 1; i <= n; ++i) r[i] = MX - l[i];
    	printf("%d
    ", ans + Solve());
        return 0;
    }
    
    
  • 相关阅读:
    AppDomain and related
    实现 Finalize 和 Dispose 以清理非托管资源
    递归显示treeview,求更好方法
    SQL练习题之子查询
    jquery in action 学习笔记
    daily english 201117
    TOP AND APPLY
    Create trace with tsql
    (转)sqlserver 锁查看
    一个简单的windows services demo(c#)
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8710996.html
Copyright © 2011-2022 走看看