题面
Sol
消圈定理:如果一个费用流网络的残量网络有负环,那么这个费用流不优
于是这个题就可以建出残量网络,然后分数规划跑负环了
# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
const int maxn(6005);
const double eps(1e-5);
int n, m, first[maxn], cnt, vis[maxn];
double dis[maxn], l = 0, r = 5e4;
struct Edge{
int to, next;
double w;
} edge[maxn];
IL void Add(RG int u, RG int v, RG double w){
edge[cnt] = (Edge){v, first[u], w}, first[u] = cnt++;
}
IL int Dfs(RG int u, RG double w){
vis[u] = 1;
for(RG int e = first[u]; e != -1; e = edge[e].next){
RG int v = edge[e].to;
RG double d = dis[u] + edge[e].w + w;
if(dis[v] > d){
dis[v] = d;
if(vis[v] || Dfs(v, w)) return 1;
}
}
vis[u] = 0;
return 0;
}
IL int Check(RG double v){
for(RG int i = 1; i <= n + 2; ++i) dis[i] = 0, vis[i] = 0;
for(RG int i = 1; i <= n + 2; ++i) if(Dfs(i, v)) return 1;
return 0;
}
int main(){
n = Input(), m = Input();
for(RG int i = 1; i <= n + 2; ++i) first[i] = -1;
for(RG int i = 1; i <= m; ++i){
RG int u = Input(), v = Input(), a = Input(), b = Input(), c = Input(), d = Input();
Add(u, v, b + d);
if(c) Add(v, u, a - d);
}
while(r - l >= eps){
RG double mid = (l + r) / 2.0;
if(Check(mid)) l = mid;
else r = mid;
}
printf("%.2lf
", r);
return 0;
}