题面
(LOJ)自己找。。
Sol
建立圆方树
考虑枚举起点(s)和终点(t)
那么答案就是(s)到(t)间的点双的点数和减去(s,t)
设方点权值为点双的点数,圆点的权值为(-1)
那么就是求(s,t)的路径上的点权和
现在考虑中间的点(x)
那么它的贡献就是经过它的路径的条数*它的权值
树(DP)得解
# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
const int maxn(4e5 + 5);
int n, m, dfn[maxn], low[maxn], idx, sum;
int sta[maxn], top, tot, val[maxn], size[maxn];
ll ans;
struct Edge{
int first[maxn], cnt, nxt[maxn << 1], to[maxn << 1];
IL void Init(){
cnt = 0, Fill(first, -1);
}
IL void Add(RG int u, RG int v){
nxt[cnt] = first[u], to[cnt] = v, first[u] = cnt++;
}
} e1, e2;
IL void Tarjan(RG int u){
dfn[u] = low[u] = ++idx, sta[++top] = u, size[u] = 1;
for(RG int e = e1.first[u]; e != -1; e = e1.nxt[e]){
RG int v = e1.to[e];
if(!dfn[v]){
Tarjan(v), low[u] = min(low[u], low[v]);
if(low[v] >= dfn[u]){
RG int x = 0, num = 1; ++tot;
do{
x = sta[top--], ++num;
e2.Add(tot, x), e2.Add(x, tot);
size[tot] += size[x];
} while(x != v);
val[tot] = num, size[u] += size[tot];
e2.Add(tot, u), e2.Add(u, tot);
}
}
else low[u] = min(low[u], dfn[v]);
}
}
IL void Dfs(RG int u, RG int ff){
RG int tmp = u <= n;
ans += 2LL * size[u] * (sum - size[u]) * val[u];
for(RG int e = e2.first[u]; e != -1; e = e2.nxt[e]){
RG int v = e2.to[e];
if(v != ff){
ans += 2LL * tmp * size[v] * val[u];
tmp += size[v];
Dfs(v, u);
}
}
}
int main(){
e1.Init(), e2.Init();
tot = n = Input(), m = Input();
for(RG int i = 1; i <= n; ++i) val[i] = -1;
for(RG int i = 1; i <= m; ++i){
RG int u = Input(), v = Input();
e1.Add(u, v), e1.Add(v, u);
}
for(RG int i = 1; i <= n; ++i)
if(!dfn[i]) Tarjan(i), sum = size[i], Dfs(i, 0);
printf("%lld
", ans);
return 0;
}