【BZOJ4887】[TJOI2017]可乐(矩阵快速幂)
题面
题解
模板题???
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAX 35
#define MOD 2017
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int g[MAX][MAX],n,m,N;
struct Matrix{int s[MAX][MAX];int*operator[](int x){return s[x];}}A,S;
Matrix operator*(Matrix a,Matrix b)
{
Matrix c;memset(c.s,0,sizeof(c.s));
for(int i=1;i<=N;++i)
for(int j=1;j<=N;++j)
for(int k=1;k<=N;++k)
c[i][j]=(c[i][j]+a[i][k]*b[k][j])%MOD;
return c;
}
int main()
{
n=read();m=read();N=n+1;
for(int i=1,u,v;i<=m;++i)u=read(),v=read(),A[u][v]+=1,A[v][u]+=1;
for(int i=1;i<=n;++i)A[i][i]+=1,A[i][N]+=1;A[N][N]+=1;
for(int i=1;i<=N;++i)S[i][i]=1;
int T=read();while(T){if(T&1)S=S*A;A=A*A;T>>=1;}
int ans=0;for(int i=1;i<=N;++i)ans=(ans+S[1][i])%MOD;
printf("%d
",ans);
return 0;
}