【BZOJ1876】[SDOI2009]SuperGCD(数论,高精度)
题面
题解
那些说数论只会(gcd)的人呢?我现在连(gcd)都不会,谁来教教我啊?
显然(gcd)除了辗转相除之外还可以辗转相减,然而辗转相减对于这题而言显然还不够优秀。
我们这样子来做。
如果当前(a,b)都是(2)的倍数,那么我们就把(2)直接同时除掉,直接在(gcd)中乘上一个(2)。否则如果只有一个数是(2)的倍数,显然可以直接把这个(2)给除掉。
这样子可以大大减少复杂度,这个似乎叫做(Stein)算法。
给个小提醒,判断一个数是不是(2)的倍数的时候,用(&1)判断比用(\%2)判断快了(20)倍。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
const ll yw=1000000000000000000;
char ch[11000];
struct BigNum
{
ll s[800];int ws;
void output()
{
printf("%lld",s[ws]);
for(int i=ws-1;i;--i)
printf("%018lld",s[i]);
puts("");
}
void clear(){memset(s,0,sizeof(s));ws=0;}
void init(char *ch)
{
int l=strlen(ch+1);reverse(&ch[1],&ch[l+1]);
for(int i=1;i<=l;i+=18)
{
++ws;ll ss=1;
for(int j=0;j<18;++j)
if(i+j<=l)s[ws]+=(ch[i+j]-48)*ss,ss*=10;
else break;
}
}
void Div2()
{
for(int i=ws;i;--i)s[i-1]+=(s[i]&1)*yw,s[i]>>=1;s[0]=0;
while(!s[ws])--ws;
}
void Multi2()
{
for(int i=1;i<=ws;++i)s[i]=s[i]<<1;
for(int i=1;i<=ws;++i)s[i+1]+=s[i]/yw,s[i]%=yw;
while(s[ws+1])++ws,s[ws+1]+=s[ws]/yw,s[ws]%=yw;
}
}A,B,One,tmp;
BigNum operator-(BigNum a,BigNum b)
{
int ws=max(a.ws,1);
for(int i=1;i<=ws;++i)a.s[i]-=b.s[i];
for(int i=ws-1;i;--i)if(a.s[i]<0)a.s[i]+=yw,a.s[i+1]-=1;
while(!a.s[ws])--ws;
a.ws=ws;return a;
}
bool operator<(BigNum a,BigNum b)
{
if(a.ws!=b.ws)return a.ws<b.ws;
for(int i=a.ws;i;--i)
if(a.s[i]!=b.s[i])return a.s[i]<b.s[i];
return false;
}int main()
{
scanf("%s",ch+1);A.init(ch);
scanf("%s",ch+1);B.init(ch);
One.s[1]=One.ws=1;int two=0;
if(B<A)swap(A,B);
while(233)
{
if(A<One)break;
if(!(A.s[1]&1)&&!(B.s[1]&1))A.Div2(),B.Div2(),++two;
else if(!(A.s[1]&1))A.Div2();
else if(!(B.s[1]&1))B.Div2();
else B=B-A;if(B<A)swap(A,B);
}
while(two)B.Multi2(),--two;B.output();
return 0;
}